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ABSTRACT

The limited-memory quasi-Newton method with simple
bounds is used to develop a novel, fully 3D magnetotelluric
(MT) inversion technique. This nonlinear inversion is based
on iterative minimization of a classical Tikhonov regularized
penalty function. However, instead of the usual model space
of log resistivities, the approach iterates in a model space
with simple bounds imposed on the conductivities of the 3D
target. The method requires storage proportional to 2 X n,,
X N, where N is the number of conductivities to be recovered
and n,, is the number of correction pairs (practically, only a
few). These requirements are much less than those imposed
by other Newton methods, which usually require storage pro-
portional to N X M or N X N, where M is the number of data
to be inverted. The derivatives of the penalty function are cal-
culated using an adjoint method based on electromagnetic
field reciprocity. The inversion involves all four entries of the
MT impedance matrix; the x3D integral equation forward-
modeling code is used as an engine for this inversion. Con-
vergence, performance, and accuracy of the inversion are
demonstrated on synthetic numerical examples. After inves-
tigating erratic resistivities in the upper part of the model ob-
tained for one of the examples, we conclude that the standard
Tikhonov regularization is not enough to provide consistent-
ly smooth underground structures. An additional regulariza-
tion helps to overcome the problem.

INTRODUCTION

Limited-memory quasi-Newton (QN) methods have become very
popular tools to solve 3D electromagnetic (EM) large-scale inverse
problems numerically (Newman and Boggs, 2004; Haber, 2005;
Plessix and Mulder, 2008). The methods require calculating gradi-

ents of the misfit only yet avoid calculating second-derivative terms.
Only several pairs of so-called correction vectors are needed, dra-
matically diminishing storage requirements. However, the inherent
disadvantage of this approach is that it can converge slowly. An ef-
fective way to accelerate the solution is to calculate the gradients us-
ing an adjoint method. A more complete review on this subject is
found in Avdeev (2005).

In this paper, we apply a limited-memory QN method with simple
bounds to solve the 3D magnetotelluric (MT) inverse problem. First,
we describe the setting of the inverse problem as well as some key
features of our implementation, referring the reader to Avdeeva and
Avdeev (2006) for details. Then, we develop the theory and basic
equations to calculate gradients of the misfit. We demonstrate that
the calculation of gradients at a given period is equivalent to only
two forward modelings and does not depend on the number of con-
ductivities to be recovered. The mathematical details of the ap-
proach are described in greater detail in four appendices.

This is followed by a demonstration of how our inversion works
practically on synthetic numerical examples. One of the examples
includes an outcropping tilted conductive dike in uniform half-
space. Another example is more complex, involving a model with re-
sistive and conductive adjacent blocks buried in a two-layered earth.
Both models have been used to test other forward and inverse codes.
For the adjacent blocks model, we encounter the problem that rea-
sonable resistivity values are recovered only exactly under the cells
beneath the MT sites. For these cells, it is possible to see the under-
ground structure yet difficult to reconstruct the resistivity elsewhere.
The resistivity image looks very rough, especially at the upper part
of the model. Tikhonov regularization alone is not enough to solve
this problem; an additional regularization must be used. We intro-
duce this regularization and demonstrate how it improves the inver-
sion results.

Our results are encouraging and suggest that the inversion can be
applied successfully to solve realistic 3D inverse problems with real
MT data.
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3D MT INVERSION

First, let us consider a 3D earth conductivity model discretized by
N cells, so that a(r) = Z_, 0 x«(r), where

( ) 1 ,r e Vk ( )

r)= , r=1W,y,z

Xk 0,r¢V, y

and V, is the volume occupied by the kth cell. In the frame of 3D MT
inversion, conductivities o (k= 1, ..., N) of the cells are sought.
This problem can be viewed as a typical optimization, so that
¢(o, A)— min, with a penalty function ¢ given as

o
oo, 1) = @)o) + Apy(a), (1)
where
1 Ng Nr B
®q = 52 2_: ﬁjntr[A}';qun] ()
j=ln=1
is a measure of the data misfit. Here, o = (o, ..., oy)”is the vector

consisting of the electrical conductivities of the cells, superscript T
means transpose, the overbar stands for the complex conjugate, N is
the number of the cells, Ny is the number of MT sites, r; = (x;, y;, z;)
where j =1, ..., Ny, and Ny is the number of the frequencies w,
where n =1, ..., Ny. The 2 X 2 matrices A, are defined as A,
=7, —D;,, where
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are matrices of the complex-valued predicted Z(r;, w,) and ob-
served D(r;, w,) impedances, respectively (see Appendix B for de-
tails). In addition,

1 2

NsNre? u[DI D]

Bjn

are the positive weights, where ¢}, is the relative error of the ob-
served impedance D, and A is the regularization parameter. The val-
ue tr[-] means the trace of its matrix argument, defined as tr[B]

= B,, + B,, forany
B, B,
B = ( xx Xy ) )
By, B,

The question of why the form of equation 2 was chosen to represent a
measure of the misfitis discussed in Appendix A. In addition, a more
generalized form of equation 2 is considered in Appendix D.

As prescribed by the regularization theory of Tikhonov and Ars-
enin (1977), the penalty function ¢ of equation 1 has a regularized
part (a stabilizer) ¢ (o). This stabilizer can be chosen in different
ways (see Farquharson and Oldenburg, 1998); moreover, the correct
choice of ¢,(o) is crucial for a reliable inversion. However, this as-
pect of the problem is beyond the scope of this paper. Thus, we con-
sider a conventional smoothing stabilizer given by

N N 2
e(0) = 2 (E wkfkak) , 3)

k=1 \k=1

where the coefficients Wy, (k' , k=1, ..., N) represent a finite-dif-

ference approximation to the Laplace operator that controls model
smoothness.

When the stabilizer is used in the inversion, we encounter the ad-
ditional problem of finding the optimum regularization parameter A.
In Avdeeva and Avdeev (2006), we propose an approach for finding
the regularization parameter for the 1D MT inversion case. There we
solve several inverse problems with a fixed value of A, starting from
the same initial guess model. For the 3D case, the inversion can take
several days to compute, which is much too time consuming.

Therefore, for the 3D case, we choose A in a manner similar to that
of Haber etal. (2000). A relatively large value of A is assigned initial-
ly and then reduced gradually. Each new problem is solved using the
solution of the previous problem (i.e., the model obtained using the
previous value of A) as an initial guess. How to choose the initial val-
ue for the regularization parameter A and how fast it should be re-
duced at this moment depends on the experience of the user and
some automatic schemes that must be developed. The so-called mul-
tiplicative regularization technique (Abubakar et al., 2008), which
introduces an automated way to choose the regularization parameter
adaptively, might be an example to follow.

Because the conductivities o (k= 1, ..., N) must be nonnega-
tive and realistic, it is important that the optimization problem of
equations 1-3 be subject to bounds

where [, and u; are the lower and upper bounds and [, =0 (k
=1,...,N), respectively. An alternative way to keep the conduc-
tivities positive is to consider the log conductivities — log(o; — [;)
or log((oy — I,)/(uy — o)) — as unknown parameters. After such
transformations, the bounds of the model parameters extend at infin-
ity and the constrained problem of equations 1-4 turns nominally to
an easier unconstrained problem of equations 1-3.

A quasi-Newton method

The problem given in equations 1-4 is a typical optimization
problem with simple bounds (Nocedal and Wright, 1999). To solve
it, we apply the limited-memory quasi-Newton method with simple
bounds. Our implementation of the method is slightly different than
that of Byrd et al. (1995). It is described in Avdeeva and Avdeev
(2006), which applies the method to the 1D problem. However, for
the 3D problem considered in this paper, we apply the method within
anew model spacem = (m, , ..., my)" of the new model parameters
my = oo, where o\ is the conductivity of kth cell for an initial-
guess model. At each iteration step /, we find the search direction p’

=P, ..., p")Tas

p(l) - _ G(I)Vm<P(Z), (5)
where
J de \T
Vg = (—‘” , —“’) (6)
aml amN og=c

is the gradient vector and G is an approximation to the inverse Hes-
sian matrix, updated at every iteration using the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula (see Nocedal
and Wright, 1999; their formula 9.5). The next iterate, ¢?*V

=(o{*V, ..., " D)7 is found as
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(l+1) - ) + oot O)Pk , (7)
where the step length a” is computed by an inexact line search in the
model space m. What is crucial in this approach is that it requires (1)
relatively small storage proportional to n.,, X N, where n,, is the
number of the correction pairs, and (2) only the (multiple) calcula-
tion of the derivatives rather than the time-consuming sensitivities
and/or the Hessian matrices. The essential difficulty of the 3D solu-
tion is the calculation of the derivatives:

9¢a _ 9%a_(0)
= oy
(7mk a(Tk

CALCULATION OF DERIVATIVES

To derive the derivatives d o/do(k = 1,...,N), we apply a tech-
nique based on the EM adjoint method (cf. Rodi, 1976). This method
uses the EM field reciprocity and has been applied to calculate sensi-
tivities (Weidelt, 1975; McGillivray and Oldenburg, 1990) and for
forward modeling and inversion (Dorn et al., 1999; Newman and
Alumbaugh, 2000; Rodi and Mackie, 2001; Newman and Boggs,
2004; Chen et al., 2005).

From equation 2, it follows that

Ng Nr
07
—1 =Re) X Eﬂ,ntr[A,Tn—L] : (8)
Ok j=1n=1 d O

where Re is the real part of the argument. To derive equation 8 from
equation 2, one might want to use obvious properties, such as

D, /do = 0, or tr B] = tt[B'] and t[C + B] = tr[ C] + tr[B] for
C and B. Substituting equation B-5 for equation 8, one obtains
g Ng Np
Pd AT -1
o =Re) > > B jntr[Ajn(Ejn,k - ZjnHjn,k)Hjn ] ’
k j=1n=1
)
where we denote
JZ; JE; JH;
Z,,=—2*», E,=—2%,  H,,=—=. 10
'jn,k (90’k ‘jn,k O"O'k jn,k (90'/( ( )

In Appendix B, we prove that calculating the matrices in equation
10 for the whole set of triple indices {(j,n,k):j=1,...,Ng;n
=1,....,Np;k=1,...,N} requires solving 2 X N;X (N + 1)
forward problems (equations B-3 and B-7). Obviously, for a 3D con-
ductivity model where the number of cells N is relatively large, such
an approach is impractical. Fortunately, we need to calculate the de-
rivatives do /doy (k=1 ..., N) rather than the matrices of equa-
tion 10. As we demonstrate below, significantly fewer forward prob-
lems must be solved when calculating derivatives.

Along with the forward problems given in equation B-7, let us
consider 2 X Nradjoint problems, presented by Maxwell equations

VXv,=ou,+j"+ V xXh" (11a)

and

V % u, = [, MV, (llb)

where

E B;p"A,H, "5 — ) (12)

j=1

and

e = — E B0 LA, 5 — 1) (13)

jn R jn
W, ;=

and where H, "means the transpose of H i "and § is the Dirac’s delta

function. In addition,

(1 0 0)
P=10 10
is the projection matrix,n =1, ..., Np,and i = V= 1.Ttis proven in
Appendix C that
g )
284 _Rey 3 f i[u’E,Jav {, (14)
doy n=1Jv,
where

o uTE,] = uVED + (DED +
+ UPED 1 PED. (15)

uMEW + PEP

The superscripts 1 and 2 denote the polarization of the source. Equa-
tion 14 means, practically, that computational loads for calculating
the derivatives do,/do; (k=1 ..., N) are equivalent to those for
solving 2 X N forward problems using equation B-3 to find E, and
for solving 2 X Ny adjoint problems using equation 11 to find u,, for
allm=1, ..., N;. As mentioned, straightforward calculation of the
derivatives using equations 9 and B-6—B-8 would require solving 2
X Nr X (N + 1) forward problems.

This approach is quite general. Itis not limited to magnetotellurics
but can be applied to a variety of EM problems (see Avdeev, 2005).

Numerical verification

To calculate the derivatives of equation 14, we need to solve the
adjoint system of Maxwell’s equations 11. To solve this system, we
should be able to calculate not the electric field u, but its averages
over numerical cells V, for the media excited by horizontal electric
JoX and magnetic h{™ dipoles. The x3D forward modeling code of
Avdeev etal. (1997, 2002) computes exactly these averages. To veri-
fy the ability of x3D, we checked it against an analytical solution for
auniform space.

For such a space, the y-component of the electric field u excited by
ahorizontal magnetic dipole of moment (M, , 0, 0) located at the co-
ordinate origin follows Ward and Hohmann (1987):

M za(r
Uy = —iop— 5 — ()(1 + k), (16)
where K = — iwpog, r=\x*+y>+ 2%, a(r) = (1/4m7r)e " and

o is the conductivity of the space. Using the x3D code, we calculate
the 10-s electric field u for a 100-ohm-m uniform space. The model-
ing domain comprises N, X N, X N, = 32 X 32 X 7 = 7168 rectan-
gular prisms, with d, = d, = 1 km. The magnetic dipole is situated
in the center of the upper face of the central cell V.. For each prism,
we compute an average of u and compare it with the analytical solu-
tion of equation 16. This comparison for the y-component of the av-
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eraged electric field (u,), = (1/|V,|)[y,u,dV is presented in Figure
la.

To calculate analytically the average (u,), for the most complicat-
ed central prism V. where the dipole is seated, we use the fact that
this prism s located at the near zone |k r| < 1. For the near zone from
equation 16, we approximate the average as

1
(uy), = mfvc u,dV

M, <1+8—

2d,d,

2
1+8>, (17)

where e = d,y/d, d = \d,d,/, and d, is the thickness of the prism.
For other cells, we use the following formula:

<” >k u (xk,yk Zk) (18)

where (x{ , y; , z;) is the center of the kth cell and u, on the right side is
given by equation 16.

In Figure 1, we present, for the sake of resolution, only 7 X 7 cells
located around the magnetic dipole for the first seven horizontal slic-
es, 0—7 km depth. One can see very good agreement between results
produced by x3D and the analytical solution. We compared the x3D
solution and the analytical one for all other components of the elec-
tric field u (not presented here) and found very good agreement.
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We performed similar comparisons for the horizontal electric di-
pole with moment (M, , 0, 0). For this experiment, we used the same
uniform space with a resistivity of 100 ohm-m, the same period of
10 s and the same numerical grid of N, X N, X N, =32 X 32 X 7
= 7168 rectangular prisms, with d, = d, = 1 km. The analytical ex-
pression for the x-component of the electric field in this case follows
Ward and Hohmann (1987), where

M, 2
u, = a(r)((3 + 3kr + K2r2)— — (1 + kr+ k r2)>
0'0}"

(19)

As mentioned, we need the average values of electric field u over
the prisms. To approximate this average over the central cell (the cell
where the electric dipole is situated), we use the following formula:

o= | wav=- e o
u = — u = — .
e |Vc| V. ! 4Udedy \/dzo + d2

This formula is obtained by integrating equation 19 over the prism
and assuming the near zone | kr| < 1. For other cells, again we use

<ux>k = ux(xli s yi > Z]i)9 (21)

where u, on the right side is given by equation 19. The comparison of
(u,) obtained from x3D and from the analytical approximations
(equations 20 and 21) is presented in Figure 1b. We performed the
comparison for all other components of the elec-
tric field and obtained good agreement.

Our conclusion from these experiments is that
we can use the x3D code to calculate the deriva-
tives given in equation 14.

VALIDATION OF METHOD

To investigate the robustness and effectiveness
of the MT inversion method, we performed sever-
al numerical experiments. For all of these experi-
ments, the x3D forward-modeling code was ex-
ploited as an inversion engine to solve the for-
ward and adjoint problems given in equations B-3
and 11. It also was used to calculate 2 X 2 matri-
ces D;, of observed impedances. In addition, we
added 1% random noise to these data and as-
signed the relative errors g, of the impedance,
needed to define weights 3;, (see equation 2), as
0.05. This value of &;, means that the misfit ¢, de-
fined in equation 2 drops to 1, when

tr[(z D)/ (Z — D)Jn]
tu{D},D;,]

Figure 1. (a) Comparison of averaged electric field (u,) for a uniform space excited by a

magnetic dipole. Each row presents seven horizontal (x-y) slices starting from the top left
to the bottom right. The upper row corresponds to {u,) obtained using x3D, the bottom

row to {u,) obtained from equations 17 and 18. (b) Comparison of {u,) for the same model

excited by an electric dipole.

drops to 5%. Using the same forward code for the
predicted values and to generate the observed
data is sufficient for testing the inversion because
the x3D code has been tested against many other
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forward-modeling codes (see Miensopust, 2008) and the difference
between the responses is less than the noise we added to the data.

Also, we constrained the conductivity values o (k =1, ..., N) to
lie between [, = 10,000 ohm-m and &, = 0.01 ohm-m in equation 4.
The number of correction pairs 7., was chosen as six after a series of
inversion runs with various values of n.,.

Outcropping conductive dike

Our first model consists of a tilted 3-ohm-m dike embedded into a
100-ohm-m half-space. The dike is located at a depth of 0-500 m
and consists of five shifted adjacent blocks of 200 X 800 X 100 m?
each. Horizontal (x-y) slices through the model starting from the top
(left) to the bottom (right) and vertical (x-z) slice through the center
of the model are presented in Figure 2a and b, respectively. A similar
model is used to test a 3D MT inversion algorithm in Zhdanov and
Tolstaya (2004).

The modeling domain comprises N, X N, X N, =35 X 35 X7
rectangular prisms (cells) of 100 X 100 X 100 m? in size that cover
the dike and some part of the surroundings; it extends from 0 to 700
m depth. The inversion domain is smaller than the modeling domain
and comprises N, X Ny X N, = 16 X 24 X 7 cells of the same size.
This means that N = 2688 conductivities o, (k=1 ..., N) of the
prisms need to be recovered. This model is challenging because of
numerical difficulties that arise from the outcropping of the dike, and
we expect erratic behavior of the recovered conductivities o in the
near-surface layers. Indeed, because it follows from equation 14 to
calculate the derivatives dgo,/do; (k=1,...,N), we have to find
the adjoint fields u, (n =1, ..., Ny) and average them over every
cell V; of the inversion domain. Equation 11 shows that these adjoint
fields u, are the electric fields generated by electric and magnetic
horizontal dipoles. The dipoles are positioned in the locations of the
MT sites. For the outcropped dike, some surface cells of the inver-
sion domain touch the dipoles, making the averaging over these cells
difficult. A closer examination of the problem shows that it is rooted
in the physics of the 3D MT problem: The derivatives of the data
misfit for the surface cells touching the dipoles are significantly
greater than for all other cells. This reflects the fact that these cells
are far more sensitive to the MT data.

Returning to the model, we calculated the observed data, matrices
D;,, for Ny = 4 frequencies (f, = 1/T,) of 1000, 100, 10, and 1 Hz
(n=1,...,Ny) and at Ny=42 sites r; (j =1, ..., Ny) coinciding
with the nodes of a homogeneous n, X n, = 6 X 7 grid with 200 m
between adjacent nodes (see Figure 3). Usually, more frequencies
are used for real MT surveys; however, our experiments are mainly
for understanding and improving the inversion solution. Using the
realistically higher number of frequencies would lead to very long
inversion times and therefore fewer experiments.

We start the inversion with the initial-guess model, which has
50 ohm-m everywhere inside the inversion domain. The result of the
inversion is presented in Figure 2. Comparison with the true model
shown in the same figure demonstrates that the position, shape, and
amplitude of the true anomaly are recovered successfully, although a
few resistive artifacts remain. This is especially true for the upper
part of the model. As we can expect for an MT inversion, the deeper
layers are not recovered as sharply as the upper layers: The bottom
part of the recovered model is smeared out naturally, delivering only
a hint of the presence of the conductive dike.
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Figure 2. Inversion result for 42 MT sites. (a) Each row of panels pre-
sents three horizontal (x-y) slices through the model starting from
the top left to the bottom right. The depths of the slices are written
above each panel. The first and third rows show an image recovered
with the use of four frequencies. The second and fourth rows present
the true model. (b) Comparison for a vertical (x-z) cross section. The
location of the cross section is shown as a dotted white line in (a).
The uppermost panel presents the inversion result obtained with the
use of a single frequency; the middle panel shows the image recov-
ered when four frequencies were used; the lower panel presents the
true model.
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The convergence curve for this inversion is presented in Figure 4.
The curve is shown as a function of the index ny,, which increases by
one after each evaluation of a pair ¢ and V,,¢. This index is propor-
tional to the time of the inversion and a little larger than the number
of QN iterations. The inversion was terminated when the data misfit
¢, could not be improved significantly; it dropped to 0.18 at ny,
= 550. As for the regularization parameter, we started with A = 10'°
and then diminished it gradually to 10° (see the dashed line). It takes
10 minutes for a single penalty function and its gradient evaluation
to be computed on a P4 2.8-GHz/512-RAM laptop. This means it
takes 4 days to obtain the result.

We also inverted only 10-Hz responses with 1% added noise. For
this single-frequency experiment, we obtained a blurry image of the
conductor at the lower part of the model with a lot of artificial resis-
tive artifacts, especially in the first layer (see Figure 2b, top panel).
Although the shape of the dike is recovered in Figure 2, the upper
part of it is shifted to the right by one cell. Comparing this recovered
image with that obtained with four frequencies (middle panel, Fig-
ure 2b), we conclude that an increased number of frequencies, in-
volved in inversion, helps improve the inversion result.

So far we have dealt with a relatively simple problem. Although
the results are promising, they give only a first indication of the reli-
ability and stability of the method. Hence, more complicated situa-
tions are studied below.

Two adjacent blocks

The next model has been considered in various 3D forward-mod-
eling papers (e.g., Wannamaker, 1991; Mackie et al., 1994; Avdeev
etal., 1997). Moreover, the inversion code by Siripunvaraporn et al.
(2005) is tested using this model. The model consists of resistive and
conductive adjacent blocks buried in a two-layered earth. The hori-

Modeling domain
1.5
1.1 bversion-domat
07 Ld Ld L4 Ld I.SIte.’
— 03 Ld Ld Ld Ld L4 L4
IS
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Figure 3. Location of 42 MT sites plotted on top of the numerical
grid. The dashed boxes mark the position of the underground con-
ductive blocks of the dike.

zontal and vertical slices presented in Figure 5 completely describe
the model. The inversion domain consists of N, X N, X N, =20
X 20X 9=3600 rectangular cells with d,=d,=4000 m and
reaches a depth of 32 km. The modeling domain coincides with the
inversion domain.

400 MT sites

For our first experiment with this model, we cover the surface (z
= 0) of the inversion domain with 400 MT sites (Ng = 400), located
on top of every surface cell of the grid. For these MT sites, we simu-
late the observed data, matrices D, at Ny = 3 frequencies of 103,
3.3 X 1073 and 1072 Hz and add 1% noise to the simulated data.
Siripunvaraporn et al. (2005) use higher frequencies of 1073,
1072, 107", 1, and 10 Hz. We also use the stabilizer ¢, and the tech-
nique of gradually diminishing regularization parameter A in the in-
version. We stop the inversion process when the value of the data
misfit ¢, cannot be improved any more and it drops to 9.7. A single
calculation of the penalty function together with its gradient for this
experiment takes about 7 minutes on a serial PC, resulting in a total
time of 50 hours.

The result of the inversion is shown in Figure 5 along with the true
model. The initial-guess model has 50 ohm-m conductivity in all
cells of the inversion domain, assuming that outside conductivity co-
incides with the true background. For this model, the true back-
ground is a two-layer structure with a 10-km-thick, 10 ohm-m layer
atop the 100 ohm-m half-space. Comparing the recovered image
with the true model, we obtain a satisfactory result — the shape and
position of the blocks are recovered. The value of the resistivity for
the conductive block is retrieved correctly, although it is overesti-
mated for the resistive block. As usual for MT inversion, the position
of the bottom of the conductive block is somewhat obscured.

10°3 =10
1 L 10°
10%= c
= L 10°
H(T) 101__ ;
S 3 S
1 _E1O7
10° -
- L 10°
10" — L0
0 200 400 600

n fg

Figure 4. Convergence of the inversion; 42 MT sites and four fre-
quencies were used. The inversion terminates when ¢, drops to 0.18,
which corresponds to an rms of 2%. Regularization parameter A
used for this inversion is shown by the dashed curve.
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80 MT sites

Now, we diminish the number of MT sites used for the inversion
to 80. These sites are placed randomly; however, we prevent two
sites from being placed in directly adjacent cells. The locations of
these MT sites are shown in Figure 6. Everything else is kept as in the
previous experiment; we change only the number of MT sites.

Figure 7 presents the result of the inversion. The recovered image
is very different from the true model. It has very erratic behavior, es-
pecially for the upper part of the model, with many artificial struc-
tures. This result cannot be considered satisfactory. If we plot the lo-
cations of the MT sites on top of the recovered image (Figure 8), we
see that reasonable resistivity values occur exactly for the cells be-
low the MT sites. For these selected cells, it is obviously possible to
retrieve the underground structure; at the same time, it is absolutely
impossible to use the resistivity of the other cells.

DISCUSSION

Let us first explain why the 3D MT QN inversion with the con-
straints imposed by traditional Tikhonov regularization sometimes
cannot resolve the resistivity structure immediately beneath the sur-
face in regions not covered by MT sites. To explain this phenome-
non, we rewrite equation 7 for the first model update oV
=", ..., 0)Tas

1 0 0
0',(() = 0',(( )(1 + a(o)pi ). (22)
Here, o\ is the conductivity of the kth cell of the initial guess model.
Further,

. (23)

o=0¢0

J J
p$>::__0$>(_iz_%A_ﬁk)
(?(Tk (?O'k

as follows from equations 1 and 5 and from the fact that G© =1.
Substituting equation 23 into equation 22, we obtain
o= 0'(0)> .

(24)

oD = 5O 1_(ﬂmgm><éiz_%Aéﬁk)
k k k doy doy

This expression for the first update o) means that the smoothness of
o'V is usually related directly to the smoothness of the gradient

I@g 5%)T
g doy)

Vo'(pd = (

Indeed, equation 24 usually can be rewritten as

2 d
a0 28

1 0
ol = o - doy

(25)

o=0

because in many cases the initial guess model ¢'” is chosen as a uni-
form half-space and, consequently, d¢,/d o'k|., o= 0.

Our experience with the model of two adjacent blocks and with
data from 80 MT sites showed that the first update oV looks very
rough. Moreover, the smoothness of this image cannot be improved

a) z: 0-1 km
40 M

z:1-2.5 km z:2.5-4.5 km z:4.5-7 km

y (km)

y (km)

=20

-40
-40 0 40 -40 0 40 -40 0 40 -40 0 40
X (km) x (km) X (km) X (km)

z: 7-10 km z: 10-14 km z: 14-19 km z: 19-25 km

-40 0 40 —-40 0 40 -40 0 40 -40 0 40
x (km) X (km) x (km) x (km)

100

10
Resistivity (2-m)

Figure 5. Result of the inversion for 400 MT sites and three frequen-
cies. (a) Each row presents four horizontal (x-y) slices through the
model starting from the top left to the bottom right. The first and third
rows correspond to the result of the inversion. The second and fourth
rows correspond to the true model. (b) Comparison for (x-z) cross
section. The location of the cross section is shown as a dotted white
line in Figure 5a. The upper panel presents the inversion result; the
lower panel presents true model.
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by Tikhonov regularization. This conclusion follows from equation
25 because the right-hand side of the equation does not depend on ¢;.
Regularization might help improve this erratic image of ¢! in the
course of consequent iterations o®. In our experience, this type of
regularization does not always help, and its effectiveness depends on
many factors.

Additional regularization

The singularity of the gradient V,, ¢, in the vicinity of the MT sites
could introduce erratic structures to the model; this behavior compli-
cates the solution of the 3D MT inverse problem. This is particularly
true with Newton optimization approaches that rely heavily on gra-
dients. Although the problem outlined above reflects the physics of
the 3D MT inverse problem, it is not very well reported in literature
— merely hinted at. A general solution is to put more constraints on
the model conductivity values directly rather than impose them
through the Tikhonov stabilizer ¢;.

As an example of such an approach, Siripunvaraporn et al. (2005)
propose to put additional constraints on the resistivity of the cells us-
ing the so-called model covariance matrix. Plessix and Mulder
(2008) suggest using exponential depth weighting. Alternatively,
Mackie et al. (2001, 2007) and Newman and Boggs (2004) propose
to adjust the gradient using a Hessian matrix. We propose a simpler
approach that could help eliminate the erratic behavior at the upper

part of the model.
In the model space m = (m, , ... , my)”, we introduce a vector g
=(g",....g")Tas
N
9 ¢(1)
l
&= fk'kﬂ , (26)
mpr

Figure 6. Location of 80 randomly distributed MT sites plotted on
top of a numerical grid.

where the coefficients f}., form a positive definite symmetric matrix
and m, = o/a”. Furthermore, we modify the QN sequence given
inequation 7, so

al Yy =l + a5, (27)
where new search direction p® = — G?g" and i”’ = m*). The ma-

trix G¥ is updated at every iteration using the limited-memory
BFGS formula, where gradients V¢ should be substituted by g and
GO=1.

We choose f., to be as follows:

o1 3§ AT

(28)

where k= y(i,, iy, i), k' = y(i,,i,, i), and y(i,, iy, i) = i, + [i,
— 1+ (i,—1) X N,— 1] X N_. The transformation given in equa-
tion 26 is called additional regularization.

Model check

Now, we can check on how the additional regularization given in
equation 26 helps in the example of two adjacent blocks, which was
introduced above. As before, the inversion domain coincides with
the modeling domain and comprises N, X N, X N, =20 X 20 X 9
= 3600 rectangular cells, extending to a depth of 32 km. Again, we
cover the surface (z = 0) of the inversion domain with 80 MT sites
(Ns = 80). The coordinates of these sites are exactly the same as be-
fore (see Figure 6). For these sites, we simulate data at frequencies of
1073,3.3 X 1073, and 10-2 Hz (N;= 3) and add 1% noise to the
simulated data.

Inversion domain = Modeling domain

40 L[] L] L] L] [ ] L] L[] L[]
20 - L] . L] L] L] - [ ]
§/ 0 L] : : : L] o L] L] L]
>‘ L] L]
_20 L[] L] L] L] . - R -
_40 ° L) L] L[] ° L]
-40 -20 0 20 40
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For these data, we compare results from two versions of our in-
verse problem solution, one without the additional regularization
(V40" used as the gradient) and another with the additional regular-
ization (g used as the gradient). Our initial-guess conductivity is
50 ohm-m for the whole inversion domain, assuming that the out-
side conductivity coincides with the true background for both of
these solutions.

For the inversion with the additional regularization, we introduce
two extra parameters a, and a, in the right-hand side of equation 28.
Values of these parameters that are too large deliver an overly
smooth resistivity image, not allowing a sufficiently small data mis-
fit ¢,. Therefore, to reach a satisfactory value of the data misfit, we
use a sequence of decreasing parameters a, and a,, similar to the re-
duction of the regularization parameter A.

First, we choose a, = a, = 3 and then gradually diminish the val-
ues of these parameters. With the first values, we run 10 iterations,
change them to a, = a, = 2 for 20 iterations, then a, = a, = 1 for an
additional 20 iterations, and finally the final 100 iterations without

z: 0-1 km

z:1-2.5 km z:2.5-4.5 km

—40

-40 0 40 —40 0 40 -40 0 40 -40 0
X (km) x (km) x (km) x (km)

z: 7-10 km z: 10-14 km z: 14-19 km z: 19-25 km

z: 4.5-7 km

regularization. We tried various values of a, and a,, but all of these
experiments show that the exact values are not critical for the inver-
sion results.

Comparison of the inversion results with and without additional
regularization is shown in Figure 7. The result with the additional
regularization is much more similar to the true model. Positions and
resistivity values of the anomalies are reasonably well matched. The
location of the interface between conductor and resistor is found.
With depth, the image becomes smoother and the conductor extends
slightly deeper, but this can be expected for MT.

In Figure 9, we compare the convergence curves for the inversions
with and without the additional regularization. The inversion
without the additional regularization converges to a data misfit
¢, of 11. The data misfit for the inversion with the addition-
al regularization drops to 2.5, resulting in a total time of 18.5 hours
on a P4 2.8-GHz/512-RAM laptop. A single calculation of
the penalty function together with its gradient takes about 7
minutes.

Figure 7. Comparison of the inversion results with
and without additional regularization. Each row
presents horizontal (x-y) slices through the model
starting from the top left to the bottom right. The
first and fourth rows correspond to the result of the
inversion without additional regularization; the
second and fifth rows correspond to the inversion
with the additional regularization; and the third and
sixth rows are the true model. Three frequencies
and 80 MT sites were used.

40

z: 25-32 km

-40 0 40 -40 0 40 -40 0 40 -40 0 40 -40 0 40

x (km) x (km) x (km) x (km)

1 10 100
Resistivity (©2-m)
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Figure 8. The location of 80 MT sites plotted on top of the upper lay-
er of the recovered image.
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Figure 9. Convergence curves for the inversions without (gray line)
and with (black line) additional regularization described in equa-
tions 26 and 28. Three frequencies and 80 MT sites were used.

CONCLUSION

We have developed a novel approach to 3D MT inversion. Our ap-
proach is based on a limited-memory QN optimization method. The
main advantage of this method, compared to other Newton optimi-
zation techniques, is the storage requirement: Only n,, pairs of vec-

tors must be stored in memory. This advantage makes it possible to
handle large-scale problems, such as 3D MT inversion. As for most
other types of optimization methods, the limited-memory QN opti-
mization requires calculation of the gradient of the penalty function
@.

We developed and implemented the adjoint method to derive ex-
plicit expressions for calculating the gradients of the data misfit. Our
development is quite general and is not limited to magnetotellurics
alone. It can be applied to a variety of EM problems, such as marine
controlled-source EM and well induction logging. Because the solu-
tion of the 3D MT inverse problem is nonunique, we need an appro-
priate regularization approach. We suggest Tikhonov regularization,
which is based on the finite-difference approximation of the Laplace
operator, assuming continuity of the gradient at the boundary of the
inversion domain. Another important part of our inversion technique
is the choice of the regularization parameter A.

Our synthetic tests with a suite of standard models demonstrate
that with pure Tikhonov regularization we achieve satisfactory re-
sults only with dense site coverage. Generally speaking, though, we
are satisfied by the software developed and the results of our model
experiments. For the conductive dike model, for example, we can re-
cover reasonably the true resistivity image. For the more complicat-
ed model with two adjacent blocks, our findings are controversial.
On the one hand, we achieve relatively good results with dense MT
sites coverage. At the same time, for a coarser coverage our inver-
sion solution cannot “see” through numerical cells not covered by
MT sites. This conclusion implies that the Tikhonov regularization,
which we include in our inversion solution, is not powerful enough
to suppress the nonsmoothness of the resistivity image, especially
for the upper part of the model. To construct reliable resistivity imag-
es, one must put stronger constraints on the model parameters —
stronger than those initially imposed by traditional Tikhonov regu-
larization. We suggest using an additional regularization based on
smoothing the gradients of the penalty function. Applying such an
approach improves the results dramatically, although some artifacts
are still present. A possible explanation is that our regularization is
too simple and a more complicated one must be applied.

In the future, a closer examination of the implemented regulariza-
tion and an investigation of possible alternatives could show how
much we can improve the efficiency of our approach. One extension
would be applying the automatic relaxation scheme to the regular-
ization. So far, we adjust the value of the regularization parameter A
manually at different stages of the inversion, based on our experi-
ence. This is time consuming because the inversion must be stopped
and the convergence examined manually and restarted with the new
value. An automatic scheme would accelerate this process, even
though human experience and judgment can never be replaced fully.

Another important improvement would be introducing the static
shift into the penalty function of equation 1. We also plan to apply
our inversion scheme to an experimental data set. However, previ-
ous examples from other 3D MT inversion software developers indi-
cate that successful verification of the inversion technique even on a
single practical data set is a complex task and might take some time.
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APPENDIX A

HOW TO MEASURE THE MISFIT

The predicted Z and observed D impedances (at a given MT site
and at a discrete period) are 2 X 2 matrices, not scalars. So the ques-
tion is how to measure the distance p(Z , D) between them to define
a proper form of misfit ¢,. The answer is not obvious. A natural way
to define such a distance is to consider the matrix A = Z — D and its
induced matrix norm

|Aul,

X s
ul>

where [[ull, = V|uy|? + |u,|? for any vector u = (u, , u,)7, and define
p(Z , D) = |Z — D|},. It can be shown that for any matrix A,

|A]l, = ma (A-1)

1AL = VA, (A-2)

. . .. . =T
where A, is the largest (real) eigenvalue of Hermitian matrix A A.
Moreover, fora2 X 2 matrix A, it follows that

(|AlL)? = %(rr[z_&TA] + Vu[ATA — 4 deffA"A]),
(A-3)
where

=T
tI’[A A] = |Axx|2 + |Axy|2 + |Ayx|2 + |Ayy|2 (A'4)

and det[z_&TA] are, respectively, the trace and determinant of A'A.
Theoretically, we are looking for equation A-3. Butitis too com-
plicated (i.e., not quadratic) to be considered as a proper form of the
misfit function. Somehow, we must simplify it.
From equation A-3 it follows that

R— =T
SulA Al= (JAlL)* = ufA"A]. (A-5)
The inequalities given in equation A-5 mean that distance p(Z , D)

=||Z — D|}, is controlled by the trace tr[A'A], where A = Z — D.
This trace can be chosen to measure the misfit as

1 _
%=5ﬂiﬂ, (A-6)

=T\ 1. . . . .
although tif A" A]is not associated with any matrix norm itself.

APPENDIX B

MT IMPEDANCE AND ITS DERIVATIVE

The MT impedance Z;, = Z(r;, »,) at the jth site r; and the nth
frequency w, is defined as a2 X 2 matrix

Z)'x Z jn

Yy

that satisfies the matrix equation as
Ejn = ZjnHjn’ (B'l)

where r; = (x;, y;, z;) is the position of jth MTsite (j =1 , ..., Ny)
and w, = 27/T, is the nth frequency (n =1, ..., Ny). Matrices E;,
and H;, of equation B-1 are defined as

_(100)
P=10 1 0

is the projection matrix and where

where

and

y

Hil) H('l) Hgl) ) T
2 2 2
H? HY HY),

H,(r) = (

are functions of Cartesian coordinatesr = (x, y, z). Here, the super-
script 1 or 2 denotes polarization of the source

(1) 1) H\T
o[22
" 0P g2

superscript 7 means transpose, and vectors E = (E, , E, , E)" and H
= (H,,H,,H)" are electric and magnetic fields. By definition, 3
X 2 matrices E,(r) and H,(r) (n = 1, ..., Ny) are composed of EM
fields; hence, they satisfy 2 X N7 systems of Maxwell’s equations,
written as

VXH,=olE,+1J, (B-3a)
and
VXE, =io,uH,, (B-3b)

where V X H,and V X E, denote 3 X 2 matrices

(V X H<'>>T (V X E“))T

2 ’ 2 ’
VxH?)/, VXE®?/,
respectively, withn = 1, ..., Ny. From equation B-1, itimmediately
follows that

-1
Zjn = EjnHjn . (B-4)

where Hjj,‘ is the inverse of matrix H;,. Applying the chain rule of
differentiation to equation B-4, one can derive

Zjn,k = (Ejn,k - ZjnHjn,k)H];qlv (B'S)

where we denote Z;,, = dZ;,/doy, E; = JE;/do, and H;,,
=dH,,/do (k= 1, ..., N). Further, from equations B-2 and B-3 it
follows that
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Ejn,k = penk(rj) s Hjn,k = phnk(rj)’ (B'6)

where 3 X 2 matrices e,,;(r) and h,,(r) satisfy 2 X Ny X N systems
of the Maxwell equations

V X hnk = U(r)enk + jnk (B'7a)
and
V X €. = i(()n/.Lhnk, (B'7b)
with given electric current densities
jnk = XkEn‘ (B'8)

To derive equations B-7 and B-8 from equation B-3, one might wish
to decompose conductivity as o (r) = =)_ o, x(r), where

() l,rer
r:
Xk O,reth

and V, is the volume occupied by the kth cell and then differentiate
equations B-3 over 0. We assume that 4J,/do;, = 0. In equations
B-7 and B-8, matrices

. (e;l) e;l) egl)>T
nk — 2 2 2
S

M) ) T
hnk:(hx h hz)

2 2 2
),

and

are functions of Cartesian coordinates r = (x, y, z). Thus, to calcu-
late the MT impedance derivatives dZ/d o (r; , ,) for the whole set
of triple indices {(j,n,k):j=1,....,Ng; n=1,...,Ny k
=1, ..., N} one should solve 2 X N; X (N + 1) forward problems
given in equations B-3 and B-7.

APPENDIX C

ADJOINT METHOD

In this appendix, we derive the key equation 14. To do this, we re-
write equations B-7 and 11 as

VXV Xey — iv,uo(r)e, = io,uxE, (C-1)
and
VXV Xu, —iouc(u, = io,u(ji" + V X h).
(C-2)

Multiplying equation C-1 by u” and equation C-2 by e/, and integrat-
ing the difference of the resulting equations over the whole 3D
space, we obtain

J el i + el, V X h]av = f [ u’E, Jav,
R Vi
(C-3)

where V is the volume occupied by the kth cell, dV = dxdydz. To de-
rive equation C-3, one might wish to use the known Green’s formula

Jes(vI'V X w—w!V X v)dV = 0, which is valid for any complex-
valued vector fields v and w. Then, we modify the left side of equa-
tion C-3 as

f el i + iw,uhlh>]aV = f u[u’E, JaV,
R Vi
(C-4)
using trfe!, V- X he™] = u (V X e,)"h®™] = iw,utr[h] he]. Substi-

tuting equations 12 and 13 for sources j* and h$* into equation C-4
and using the property that [v(r)S(r —r;)dV = v(r)) for any vec-

tor field v, one derives

Ng
S Bt AL (pe,i(r)) — Z,ph,(r)H; ']
j=1
= f [ u’E, |av (C-5)
Vk

because tff BC] = tr[ CB], t B”| = tr[B], and (BC)” = C"B” for any
pair of matrices B and C. Comparing equations C-5, B-6, and 9, one
concludes immediately that

Nr
Jd
2P _Red S f u[u’E,Jav §. (C-6)
do n=1
Vi
APPENDIX D

A MORE GENERAL MISFIT AND ITS
DERIVATIVE

Equation 2 is written for a particular problem where the data mis-
fit ¢, includes the impedance difference matrices A ;,, whose entries
are weighted equally by the values \ﬂ—j,, The generalization of our
theory for the case of the individually weighted entries of A, is not
straightforward and is therefore beyond this paper’s scope. The main
difficulty is in deriving equations for the derivatives d ¢,/d 0. How-
ever, it still is possible to extend the theory to the more general case if
the data misfit

Nt

Ng
21 > tr{Z,-TnK,»n] (D-1)

n=1

Pa =

0| =

is written in terms of the weighted matrices

¢ W.x XX W.)C 'A.)C )
Ajn = ( XA ! }> s (D_z)
Wiy WyyAyy /i

where the tilde means weighting by real-valued weights
Wae s Wiy » Wy, Wy, If we assume additionally thatw,, = w,,, thenitis
casy to prove that B” = BT and tf BC] = tf BC] for any B and C.
These simple properties allow us to obtain the relevant alterations of
equations presented in this paper and could be used to derive equa-
tion 14 for d ¢,/ d oy

It can be shown that equations 8, 9, 12, 13, and C-5, respectively,
alter to the following forms:
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N
g Ng Nr
% _ =Re) > X tr AT—L , (D-3)
ﬁO’k j=1n=1 doy
P Ng Np [_
I _Rei X tr[f&’-;(Ejnk
do =tz
Z H]n k)H :| > (D'4)
Ny
[ pTAJnHMTé(r -r), (D-5)
j=1
he = E pTZ]TnA]nH]n 'sr — ),
lwmu’j—l
(D-6)
and
Ng [
2 tr A};:(penk(rj) Zjnphnk(rj))Hj;zl] = Jtr[ur{En]dV;
j=1 v,
(D-7)
where

2 2
A‘ — (WxxAxx nyAxy) . (D-8)

jn 2 2
wyAye Wy Ay

All other equations presented in the paper remain the same, includ-
ing equation 14.
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