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ABSTRACT

The limited-memory quasi-Newton method with simple
bounds is used to develop a novel, fully 3D magnetotelluric
�MT� inversion technique. This nonlinear inversion is based
on iterative minimization of a classical Tikhonov regularized
penalty function. However, instead of the usual model space
of log resistivities, the approach iterates in a model space
with simple bounds imposed on the conductivities of the 3D
target. The method requires storage proportional to 2 � ncp

� N, where N is the number of conductivities to be recovered
and ncp is the number of correction pairs �practically, only a
few�. These requirements are much less than those imposed
by other Newton methods, which usually require storage pro-
portional to N � M or N � N, where M is the number of data
to be inverted. The derivatives of the penalty function are cal-
culated using an adjoint method based on electromagnetic
field reciprocity. The inversion involves all four entries of the
MT impedance matrix; the x3D integral equation forward-
modeling code is used as an engine for this inversion. Con-
vergence, performance, and accuracy of the inversion are
demonstrated on synthetic numerical examples. After inves-
tigating erratic resistivities in the upper part of the model ob-
tained for one of the examples, we conclude that the standard
Tikhonov regularization is not enough to provide consistent-
ly smooth underground structures. An additional regulariza-
tion helps to overcome the problem.

INTRODUCTION

Limited-memory quasi-Newton �QN� methods have become very
opular tools to solve 3D electromagnetic �EM� large-scale inverse
roblems numerically �Newman and Boggs, 2004; Haber, 2005;
lessix and Mulder, 2008�. The methods require calculating gradi-
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nts of the misfit only yet avoid calculating second-derivative terms.
nly several pairs of so-called correction vectors are needed, dra-
atically diminishing storage requirements. However, the inherent

isadvantage of this approach is that it can converge slowly. An ef-
ective way to accelerate the solution is to calculate the gradients us-
ng an adjoint method. A more complete review on this subject is
ound in Avdeev �2005�.

In this paper, we apply a limited-memory QN method with simple
ounds to solve the 3D magnetotelluric �MT� inverse problem. First,
e describe the setting of the inverse problem as well as some key

eatures of our implementation, referring the reader to Avdeeva and
vdeev �2006� for details. Then, we develop the theory and basic
quations to calculate gradients of the misfit. We demonstrate that
he calculation of gradients at a given period is equivalent to only
wo forward modelings and does not depend on the number of con-
uctivities to be recovered. The mathematical details of the ap-
roach are described in greater detail in four appendices.

This is followed by a demonstration of how our inversion works
ractically on synthetic numerical examples. One of the examples
ncludes an outcropping tilted conductive dike in uniform half-
pace.Another example is more complex, involving a model with re-
istive and conductive adjacent blocks buried in a two-layered earth.
oth models have been used to test other forward and inverse codes.
or the adjacent blocks model, we encounter the problem that rea-
onable resistivity values are recovered only exactly under the cells
eneath the MT sites. For these cells, it is possible to see the under-
round structure yet difficult to reconstruct the resistivity elsewhere.
he resistivity image looks very rough, especially at the upper part
f the model. Tikhonov regularization alone is not enough to solve
his problem; an additional regularization must be used. We intro-
uce this regularization and demonstrate how it improves the inver-
ion results.

Our results are encouraging and suggest that the inversion can be
pplied successfully to solve realistic 3D inverse problems with real
T data.

ovember 2008; published online 27April 2009; corrected version published

anAcademy of Sciences, Pushkov Institute of Terrestrial Magnetism,
.ru.
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3D MT INVERSION

First, let us consider a 3D earth conductivity model discretized by
cells, so that ��r���k�1

N � k� k�r�, where

� k�r� � �1 , r � Vk

0 , r � Vk
� , r � �x , y , z�

nd Vk is the volume occupied by the kth cell. In the frame of 3D MT
nversion, conductivities � k �k�1 , … , N� of the cells are sought.
his problem can be viewed as a typical optimization, so that
�� , ��→

�,�
min, with a penalty function � given as

��� , �� � �d��� � ��s��� , �1�

here

�d �
1

2 �
j�1

NS

�
n�1

NT

� jntr�Ā jn
T A jn� �2�

s a measure of the data misfit. Here, �� �� 1 , … , � N�T is the vector
onsisting of the electrical conductivities of the cells, superscript T
eans transpose, the overbar stands for the complex conjugate, N is

he number of the cells, NS is the number of MT sites, r j� �xj , yj , zj�
here j�1 , … , NS, and NT is the number of the frequencies �n

here n�1 , … , NT. The 2 � 2 matrices A jn are defined as A jn

Z jn�D jn, where

Z jn � �Zxx Zxy

Zyx Zyy
	

jn
and D jn � �Dxx Dxy

Dyx Dyy
	

jn

re matrices of the complex-valued predicted Z�r j , �n� and ob-
erved D�r j , �n� impedances, respectively �see Appendix B for de-
ails�. In addition,

� jn �
1

NSNT

2

� jn
2 tr�D̄ jn

T D jn�

re the positive weights, where � jn is the relative error of the ob-
erved impedance D jn and � is the regularization parameter. The val-
e tr�·� means the trace of its matrix argument, defined as tr�B�

Bxx�Byy for any

B � �Bxx Bxy

Byx Byy
	 .

he question of why the form of equation 2 was chosen to represent a
easure of the misfit is discussed inAppendix A. In addition, a more

eneralized form of equation 2 is considered inAppendix D.
As prescribed by the regularization theory of Tikhonov and Ars-

nin �1977�, the penalty function � of equation 1 has a regularized
art �a stabilizer� �s���. This stabilizer can be chosen in different
ays �see Farquharson and Oldenburg, 1998�; moreover, the correct

hoice of �s��� is crucial for a reliable inversion. However, this as-
ect of the problem is beyond the scope of this paper. Thus, we con-
ider a conventional smoothing stabilizer given by

�s��� � �
k��1

N ��
k�1

N

Wk�k� k	2

, �3�

here the coefficients W �k , k�1 , … , N� represent a finite-dif-
k�k �
erence approximation to the Laplace operator that controls model
moothness.

When the stabilizer is used in the inversion, we encounter the ad-
itional problem of finding the optimum regularization parameter �.
n Avdeeva and Avdeev �2006�, we propose an approach for finding
he regularization parameter for the 1D MT inversion case. There we
olve several inverse problems with a fixed value of �, starting from
he same initial guess model. For the 3D case, the inversion can take
everal days to compute, which is much too time consuming.

Therefore, for the 3D case, we choose � in a manner similar to that
f Haber et al. �2000�.Arelatively large value of � is assigned initial-
y and then reduced gradually. Each new problem is solved using the
olution of the previous problem �i.e., the model obtained using the
revious value of �� as an initial guess. How to choose the initial val-
e for the regularization parameter � and how fast it should be re-
uced at this moment depends on the experience of the user and
ome automatic schemes that must be developed. The so-called mul-
iplicative regularization technique �Abubakar et al., 2008�, which
ntroduces an automated way to choose the regularization parameter
daptively, might be an example to follow.

Because the conductivities � k �k�1 , … , N� must be nonnega-
ive and realistic, it is important that the optimization problem of
quations 1–3 be subject to bounds

lk 	 � k 	 uk, �4�

here lk and uk are the lower and upper bounds and lk 
 0 �k
1 , … , N�, respectively. An alternative way to keep the conduc-

ivities positive is to consider the log conductivities — log�� k�lk�
r log��� k�lk�/�uk�� k�� — as unknown parameters. After such
ransformations, the bounds of the model parameters extend at infin-
ty and the constrained problem of equations 1–4 turns nominally to
n easier unconstrained problem of equations 1–3.

quasi-Newton method

The problem given in equations 1–4 is a typical optimization
roblem with simple bounds �Nocedal and Wright, 1999�. To solve
t, we apply the limited-memory quasi-Newton method with simple
ounds. Our implementation of the method is slightly different than
hat of Byrd et al. �1995�. It is described in Avdeeva and Avdeev
2006�, which applies the method to the 1D problem. However, for
he 3D problem considered in this paper, we apply the method within
new model space m� �m1 , … , mN�T of the new model parameters
k�� k/� k

�0�, where � k
�0� is the conductivity of kth cell for an initial-

uess model. At each iteration step l, we find the search direction p�l�

�p1
�l� , … , pN

�l��T as

p�l� � � G�l��m��l�, �5�

here


�m��l� � � ��

�m1
, … ,

��

�mN
	T


��� �l�
�6�

s the gradient vector and G�l� is an approximation to the inverse Hes-
ian matrix, updated at every iteration using the limited-memory
royden-Fletcher-Goldfarb-Shanno �BFGS� formula �see Nocedal
nd Wright, 1999; their formula 9.5�. The next iterate, ��l�1�

�� �l�1� , … , � �l�1��T, is found as
1 N
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� k
�l�1� � � k

�l� � ��l�� k
�0�pk

�l�, �7�

here the step length � �l� is computed by an inexact line search in the
odel space m. What is crucial in this approach is that it requires �1�

elatively small storage proportional to ncp � N, where ncp is the
umber of the correction pairs, and �2� only the �multiple� calcula-
ion of the derivatives rather than the time-consuming sensitivities
nd/or the Hessian matrices. The essential difficulty of the 3D solu-
ion is the calculation of the derivatives:

��d

�mk
�

��d

�� k
� k

�0�.

CALCULATION OF DERIVATIVES

To derive the derivatives ��d/�� k�k � 1,… ,N�, we apply a tech-
ique based on the EM adjoint method �cf. Rodi, 1976�. This method
ses the EM field reciprocity and has been applied to calculate sensi-
ivities �Weidelt, 1975; McGillivray and Oldenburg, 1990� and for
orward modeling and inversion �Dorn et al., 1999; Newman and
lumbaugh, 2000; Rodi and Mackie, 2001; Newman and Boggs,
004; Chen et al., 2005�.

From equation 2, it follows that

��d

�� k
� Re��

j�1

NS

�
n�1

NT

� jntr�Ā jn
T �Z jn

�� k
�� , �8�

here Re is the real part of the argument. To derive equation 8 from
quation 2, one might want to use obvious properties, such as
D jn/�� k�0, or tr�B�� tr�BT� and tr�C�B�� tr�C�� tr�B� for
and B. Substituting equation B-5 for equation 8, one obtains

��d

�� k
� Re��

j�1

NS

�
n�1

NT

� jntr�Ā jn
T �E jn,k � Z jnH jn,k�H jn

�1�� ,

�9�

here we denote

jn,k �
�Z jn

�� k
, E jn,k �

�E jn

�� k
, H jn,k �

�H jn

�� k
. �10�

In Appendix B, we prove that calculating the matrices in equation
0 for the whole set of triple indices �j , n , k� : j�1 , … , NS ; n

1 , … , NT ; k�1 , … , N� requires solving 2 � NT � �N�1�
orward problems �equations B-3 and B-7�. Obviously, for a 3D con-
uctivity model where the number of cells N is relatively large, such
n approach is impractical. Fortunately, we need to calculate the de-
ivatives ��d/�� k �k�1 , … , N� rather than the matrices of equa-
ion 10.As we demonstrate below, significantly fewer forward prob-
ems must be solved when calculating derivatives.

Along with the forward problems given in equation B-7, let us
onsider 2 � NT adjoint problems, presented by Maxwell equations

� � vn � �un � jn
ext � � � hn

ext �11a�

nd

� � un � i�n�vn, �11b�

here
jn
ext � �

j�1

NS

� jnpTĀ jnH jn
�T �r � r j� �12�

nd

hn
ext � �

1

i�n�
�
j�1

NS

� jnpTZ jn
T Ā jnH jn

�T �r � r j� �13�

nd where H jn
�T means the transpose of H jn

�1 and  is the Dirac’s delta
unction. In addition,

p � �1 0 0

0 1 0
	

s the projection matrix, n�1 , … , NT, and i���1. It is proven in
ppendix C that

��d

�� k
� Re��

n�1

NT �
Vk

tr�un
TEn�dV� , �14�

here

tr�un
TEn� � ux

�1�Ex
�1� � uy

�1�Ey
�1� � uz

�1�Ez
�1� � ux

�2�Ex
�2�

� uy
�2�Ey

�2� � uz
�2�Ez

�2�. �15�

he superscripts 1 and 2 denote the polarization of the source. Equa-
ion 14 means, practically, that computational loads for calculating
he derivatives ��d/�� k �k�1 , … , N� are equivalent to those for
olving 2 � NT forward problems using equation B-3 to find En and
or solving 2 � NT adjoint problems using equation 11 to find un for
ll n�1 , … , NT. As mentioned, straightforward calculation of the
erivatives using equations 9 and B-6–B-8 would require solving 2

NT � �N�1� forward problems.
This approach is quite general. It is not limited to magnetotellurics

ut can be applied to a variety of EM problems �see Avdeev, 2005�.

umerical verification

To calculate the derivatives of equation 14, we need to solve the
djoint system of Maxwell’s equations 11. To solve this system, we
hould be able to calculate not the electric field un but its averages
ver numerical cells Vk for the media excited by horizontal electric

n
ext and magnetic hn

ext dipoles. The x3D forward modeling code of
vdeev et al. �1997, 2002� computes exactly these averages. To veri-

y the ability of x3D, we checked it against an analytical solution for
uniform space.
For such a space, the y-component of the electric field u excited by

horizontal magnetic dipole of moment �Mx , 0 , 0� located at the co-
rdinate origin follows Ward and Hohmann �1987�:

uy � � i��
Mxza�r�

r2 �1 � �r� , �16�

here �2 � � i��� 0, r��x2�y2�z2, a�r�� �1/4�r�e��r and
0 is the conductivity of the space. Using the x3D code, we calculate

he 10-s electric field u for a 100-ohm-m uniform space. The model-
ng domain comprises Nx � Ny � Nz�32 � 32 � 7�7168 rectan-
ular prisms, with dx�dy �1 km. The magnetic dipole is situated
n the center of the upper face of the central cell Vc. For each prism,
e compute an average of u and compare it with the analytical solu-

ion of equation 16. This comparison for the y-component of the av-
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raged electric field �uy�k� �1/�Vk���Vk
uydV is presented in Figure

a.
To calculate analytically the average �uy�c for the most complicat-

d central prism Vc where the dipole is seated, we use the fact that
his prism is located at the near zone ��r� � 1. For the near zone from
quation 16, we approximate the average as

�uy�c �
1

�Vc�
�

Vc

uydV

� i��
Mx

2dxdy
�1 � � � �1 � �2

�
	 , �17�

here ��dz0/d, d��dxdy/� , and dz0 is the thickness of the prism.
or other cells, we use the following formula:

�uy�k � uy�xk
c , yk

c , zk
c� , �18�

here �xk
c , yk

c , zk
c� is the center of the kth cell and uy on the right side is

iven by equation 16.
In Figure 1, we present, for the sake of resolution, only 7 � 7 cells

ocated around the magnetic dipole for the first seven horizontal slic-
s, 0–7 km depth. One can see very good agreement between results
roduced by x3D and the analytical solution. We compared the x3D
olution and the analytical one for all other components of the elec-
ric field u �not presented here� and found very good agreement.
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igure 1. �a� Comparison of averaged electric field �uy� for a uniform
agnetic dipole. Each row presents seven horizontal �x-y� slices star

o the bottom right. The upper row corresponds to �uy� obtained usi
ow to �uy� obtained from equations 17 and 18. �b� Comparison of �ux

xcited by an electric dipole.
We performed similar comparisons for the horizontal electric di-
ole with moment �Mx , 0 , 0�. For this experiment, we used the same
niform space with a resistivity of 100 ohm-m, the same period of
0 s and the same numerical grid of Nx � Ny � Nz�32 � 32 � 7

7168 rectangular prisms, with dx�dy �1 km. The analytical ex-
ression for the x-component of the electric field in this case follows
ard and Hohmann �1987�, where

ux �
Mxa�r�
� 0r2 ��3 � 3�r � �2r2�

x2

r2 � �1 � �r � �2r2�	 .

�19�

As mentioned, we need the average values of electric field u over
he prisms. To approximate this average over the central cell �the cell
here the electric dipole is situated�, we use the following formula:

�ux�c �
1

�Vc�
�

Vc

uxdV � �
Mx

4� 0dxdy

1

�dz0
2 � d2

. �20�

his formula is obtained by integrating equation 19 over the prism
nd assuming the near zone ��r� � 1. For other cells, again we use

�ux�k � ux�xk
c , yk

c , zk
c� , �21�

here ux on the right side is given by equation 19. The comparison of
ux� obtained from x3D and from the analytical approximations
equations 20 and 21� is presented in Figure 1b. We performed the

comparison for all other components of the elec-
tric field and obtained good agreement.

Our conclusion from these experiments is that
we can use the x3D code to calculate the deriva-
tives given in equation 14.

VALIDATION OF METHOD

To investigate the robustness and effectiveness
of the MT inversion method, we performed sever-
al numerical experiments. For all of these experi-
ments, the x3D forward-modeling code was ex-
ploited as an inversion engine to solve the for-
ward and adjoint problems given in equations B-3
and 11. It also was used to calculate 2 � 2 matri-
ces D jn of observed impedances. In addition, we
added 1% random noise to these data and as-
signed the relative errors � jn of the impedance,
needed to define weights � jn �see equation 2�, as
0.05. This value of � jn means that the misfit �d de-
fined in equation 2 drops to 1, when

rms � � 1

NSNT
�
j�1

NS

�
n�1

NT

�
tr��Z � D� jn

T �Z � D� jn�
tr�D̄ jn

T D jn�
	1/2

drops to 5%. Using the same forward code for the
predicted values and to generate the observed
data is sufficient for testing the inversion because
the x3D code has been tested against many other

z: 4.5−7 km

x (km)
−3 −1 1 3
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−3 −1 1 3
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7
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ng x3D
� for th



f
b

l
T
i

O

1
a
e
�
o
m
T

r
t
m
a
T
p
n
w
n
c
t
c
fi
h
M
s
d
i
m
g
a

D
�
w
b
a
f
r
i

5
i
s
a
f
p
l
p
a

F
s
t
a
w
t
l
T
u
e
t

3D MT inversion using an LMQN method F49

D
ow

nl
oa

de
d 

05
/0

8/
14

 to
 1

43
.2

10
.1

03
.1

82
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

orward-modeling codes �see Miensopust, 2008� and the difference
etween the responses is less than the noise we added to the data.

Also, we constrained the conductivity values � k �k�1 , … , N� to
ie between lk�10,000 ohm-m and uk�0.01 ohm-m in equation 4.
he number of correction pairs ncp was chosen as six after a series of

nversion runs with various values of ncp.

utcropping conductive dike

Our first model consists of a tilted 3-ohm-m dike embedded into a
00-ohm-m half-space. The dike is located at a depth of 0–500 m
nd consists of five shifted adjacent blocks of 200 � 800 � 100 m3

ach. Horizontal �x-y� slices through the model starting from the top
left� to the bottom �right� and vertical �x-z� slice through the center
f the model are presented in Figure 2a and b, respectively.Asimilar
odel is used to test a 3D MT inversion algorithm in Zhdanov and
olstaya �2004�.
The modeling domain comprises Nx � Ny � Nz�35 � 35 � 7

ectangular prisms �cells� of 100 � 100 � 100 m3 in size that cover
he dike and some part of the surroundings; it extends from 0 to 700

depth. The inversion domain is smaller than the modeling domain
nd comprises Nx � Ny � Nz�16 � 24 � 7 cells of the same size.
his means that N�2688 conductivities � k �k�1 , … , N� of the
risms need to be recovered. This model is challenging because of
umerical difficulties that arise from the outcropping of the dike, and
e expect erratic behavior of the recovered conductivities � k in the
ear-surface layers. Indeed, because it follows from equation 14 to
alculate the derivatives ��d/�� k �k�1 , … , N�, we have to find
he adjoint fields un �n�1 , … , NT� and average them over every
ell Vk of the inversion domain. Equation 11 shows that these adjoint
elds un are the electric fields generated by electric and magnetic
orizontal dipoles. The dipoles are positioned in the locations of the
T sites. For the outcropped dike, some surface cells of the inver-

ion domain touch the dipoles, making the averaging over these cells
ifficult. A closer examination of the problem shows that it is rooted
n the physics of the 3D MT problem: The derivatives of the data

isfit for the surface cells touching the dipoles are significantly
reater than for all other cells. This reflects the fact that these cells
re far more sensitive to the MT data.

Returning to the model, we calculated the observed data, matrices

jn, for NT�4 frequencies �fn�1/Tn� of 1000, 100, 10, and 1 Hz
n�1 , … , NT� and at NS�42 sites rj �j�1 , … , NS� coinciding
ith the nodes of a homogeneous nx � ny �6 � 7 grid with 200 m
etween adjacent nodes �see Figure 3�. Usually, more frequencies
re used for real MT surveys; however, our experiments are mainly
or understanding and improving the inversion solution. Using the
ealistically higher number of frequencies would lead to very long
nversion times and therefore fewer experiments.

We start the inversion with the initial-guess model, which has
0 ohm-m everywhere inside the inversion domain. The result of the
nversion is presented in Figure 2. Comparison with the true model
hown in the same figure demonstrates that the position, shape, and
mplitude of the true anomaly are recovered successfully, although a
ew resistive artifacts remain. This is especially true for the upper
art of the model. As we can expect for an MT inversion, the deeper
ayers are not recovered as sharply as the upper layers: The bottom
art of the recovered model is smeared out naturally, delivering only
hint of the presence of the conductive dike.
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igure 2. Inversion result for 42 MT sites. �a� Each row of panels pre-
ents three horizontal �x-y� slices through the model starting from
he top left to the bottom right. The depths of the slices are written
bove each panel. The first and third rows show an image recovered
ith the use of four frequencies. The second and fourth rows present

he true model. �b� Comparison for a vertical �x-z� cross section. The
ocation of the cross section is shown as a dotted white line in �a�.
he uppermost panel presents the inversion result obtained with the
se of a single frequency; the middle panel shows the image recov-
red when four frequencies were used; the lower panel presents the
rue model.
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The convergence curve for this inversion is presented in Figure 4.
he curve is shown as a function of the index nfg, which increases by
ne after each evaluation of a pair � and �m�. This index is propor-
ional to the time of the inversion and a little larger than the number
f QN iterations. The inversion was terminated when the data misfit
d could not be improved significantly; it dropped to 0.18 at nfg

550.As for the regularization parameter, we started with ��1010

nd then diminished it gradually to 106 �see the dashed line�. It takes
0 minutes for a single penalty function and its gradient evaluation
o be computed on a P4 2.8-GHz/512-RAM laptop. This means it
akes 4 days to obtain the result.

We also inverted only 10-Hz responses with 1% added noise. For
his single-frequency experiment, we obtained a blurry image of the
onductor at the lower part of the model with a lot of artificial resis-
ive artifacts, especially in the first layer �see Figure 2b, top panel�.
lthough the shape of the dike is recovered in Figure 2, the upper
art of it is shifted to the right by one cell. Comparing this recovered
mage with that obtained with four frequencies �middle panel, Fig-
re 2b�, we conclude that an increased number of frequencies, in-
olved in inversion, helps improve the inversion result.

So far we have dealt with a relatively simple problem. Although
he results are promising, they give only a first indication of the reli-
bility and stability of the method. Hence, more complicated situa-
ions are studied below.

wo adjacent blocks

The next model has been considered in various 3D forward-mod-
ling papers �e.g., Wannamaker, 1991; Mackie et al., 1994; Avdeev
t al., 1997�. Moreover, the inversion code by Siripunvaraporn et al.
2005� is tested using this model. The model consists of resistive and
onductive adjacent blocks buried in a two-layered earth. The hori-
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igure 3. Location of 42 MT sites plotted on top of the numerical
rid. The dashed boxes mark the position of the underground con-
uctive blocks of the dike.
ontal and vertical slices presented in Figure 5 completely describe
he model. The inversion domain consists of Nx � Ny � Nz�20

20 � 9�3600 rectangular cells with dx�dy �4000 m and
eaches a depth of 32 km. The modeling domain coincides with the
nversion domain.

00 MT sites

For our first experiment with this model, we cover the surface �z
0� of the inversion domain with 400 MT sites �NS�400�, located

n top of every surface cell of the grid. For these MT sites, we simu-
ate the observed data, matrices D jn, at NT�3 frequencies of 10�3,
.3 � 10�3, and 10�2 Hz and add 1% noise to the simulated data.
iripunvaraporn et al. �2005� use higher frequencies of 10�3,
0�2 , 10�1, 1, and 10 Hz. We also use the stabilizer �s and the tech-
ique of gradually diminishing regularization parameter � in the in-
ersion. We stop the inversion process when the value of the data
isfit �d cannot be improved any more and it drops to 9.7. A single

alculation of the penalty function together with its gradient for this
xperiment takes about 7 minutes on a serial PC, resulting in a total
ime of 50 hours.

The result of the inversion is shown in Figure 5 along with the true
odel. The initial-guess model has 50 ohm-m conductivity in all

ells of the inversion domain, assuming that outside conductivity co-
ncides with the true background. For this model, the true back-
round is a two-layer structure with a 10-km-thick, 10 ohm-m layer
top the 100 ohm-m half-space. Comparing the recovered image
ith the true model, we obtain a satisfactory result — the shape and
osition of the blocks are recovered. The value of the resistivity for
he conductive block is retrieved correctly, although it is overesti-

ated for the resistive block.As usual for MT inversion, the position
f the bottom of the conductive block is somewhat obscured.
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igure 4. Convergence of the inversion; 42 MT sites and four fre-
uencies were used. The inversion terminates when �d drops to 0.18,
hich corresponds to an rms of 2%. Regularization parameter �
sed for this inversion is shown by the dashed curve.
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0 MT sites

Now, we diminish the number of MT sites used for the inversion
o 80. These sites are placed randomly; however, we prevent two
ites from being placed in directly adjacent cells. The locations of
hese MT sites are shown in Figure 6. Everything else is kept as in the
revious experiment; we change only the number of MT sites.

Figure 7 presents the result of the inversion. The recovered image
s very different from the true model. It has very erratic behavior, es-
ecially for the upper part of the model, with many artificial struc-
ures. This result cannot be considered satisfactory. If we plot the lo-
ations of the MT sites on top of the recovered image �Figure 8�, we
ee that reasonable resistivity values occur exactly for the cells be-
ow the MT sites. For these selected cells, it is obviously possible to
etrieve the underground structure; at the same time, it is absolutely
mpossible to use the resistivity of the other cells.

DISCUSSION

Let us first explain why the 3D MT QN inversion with the con-
traints imposed by traditional Tikhonov regularization sometimes
annot resolve the resistivity structure immediately beneath the sur-
ace in regions not covered by MT sites. To explain this phenome-
on, we rewrite equation 7 for the first model update ��1�

�� 1
�1� , … , � N

�1��T as

� k
�1� � � k

�0��1 � ��0�pk
�0�� . �22�

ere, � k
�0� is the conductivity of the kth cell of the initial guess model.

urther,

pk
�0� � � � k

�0�
� ��d

�� k
� �

��s

�� k
	


����0�
, �23�

s follows from equations 1 and 5 and from the fact that G�0��I.
ubstituting equation 23 into equation 22, we obtain

� k
�1� � � k

�0��1 � ��0�� k
�0�
� ��d

�� k
� �

��s

�� k
	


����0�
	 .

�24�

his expression for the first update ��1� means that the smoothness of
�1� is usually related directly to the smoothness of the gradient

���d � � ��d

�� 1
, … ,

��d

�� N
	T

.

ndeed, equation 24 usually can be rewritten as

� k
�1� � � k

�0� � ��0�� k
�0�2
 ��d

�� k



����0�
�25�

ecause in many cases the initial guess model ��0� is chosen as a uni-
orm half-space and, consequently, ��� /�� � �0��0.
s k ���
Our experience with the model of two adjacent blocks and with
ata from 80 MT sites showed that the first update ��1� looks very
ough. Moreover, the smoothness of this image cannot be improved
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igure 5. Result of the inversion for 400 MT sites and three frequen-
ies. �a� Each row presents four horizontal �x-y� slices through the
odel starting from the top left to the bottom right. The first and third

ows correspond to the result of the inversion. The second and fourth
ows correspond to the true model. �b� Comparison for �x-z� cross
ection. The location of the cross section is shown as a dotted white
ine in Figure 5a. The upper panel presents the inversion result; the
ower panel presents true model.
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y Tikhonov regularization. This conclusion follows from equation
5 because the right-hand side of the equation does not depend on �s.
egularization might help improve this erratic image of ��1� in the
ourse of consequent iterations ��l�. In our experience, this type of
egularization does not always help, and its effectiveness depends on
any factors.

dditional regularization

The singularity of the gradient ���d in the vicinity of the MT sites
ould introduce erratic structures to the model; this behavior compli-
ates the solution of the 3D MT inverse problem. This is particularly
rue with Newton optimization approaches that rely heavily on gra-
ients. Although the problem outlined above reflects the physics of
he 3D MT inverse problem, it is not very well reported in literature

merely hinted at. A general solution is to put more constraints on
he model conductivity values directly rather than impose them
hrough the Tikhonov stabilizer �s.

As an example of such an approach, Siripunvaraporn et al. �2005�
ropose to put additional constraints on the resistivity of the cells us-
ng the so-called model covariance matrix. Plessix and Mulder
2008� suggest using exponential depth weighting. Alternatively,

ackie et al. �2001, 2007� and Newman and Boggs �2004� propose
o adjust the gradient using a Hessian matrix. We propose a simpler
pproach that could help eliminate the erratic behavior at the upper
art of the model.

In the model space m� �m1 , … , mN�T, we introduce a vector g̃�l�

�g̃1
�l� , … , g̃N

�l��T as

g̃k
�l� � �

k��1

N

fk�k
���l�

�mk�
, �26�

igure 6. Location of 80 randomly distributed MT sites plotted on
op of a numerical grid.
here the coefficients fk�k form a positive definite symmetric matrix
nd mk�� k/� k

�0�. Furthermore, we modify the QN sequence given
n equation 7, so

m̃k
�l�1� � m̃k

�l� � ��l�p̃k
�l�, �27�

here new search direction p̃�l��� G̃�l�g̃�l� and m̃k
�0��mk

�0�. The ma-
rix G̃�l� is updated at every iteration using the limited-memory
FGS formula, where gradients �m� should be substituted by g̃ and

˜ �0��I.
We choose fk�k to be as follows:

fk�k �� e
�

1
2
�� ix� � ix

ax
	2

�� iy� � iy
ay

	2�
�

lx�1

Nx

�
ly�1

Ny

e
�

1
2�� lx � ix

ax
	2

�� ly � iy
ay

	2� , iz � iz�

0, iz � iz�
�
�28�

here k�� �ix , iy , iz�, k��� �ix� , iy� , iz��, and � �ix , iy , iz�� iz� �iy

1� �ix�1� � Ny�1� � Nz. The transformation given in equa-
ion 26 is called additional regularization.

odel check

Now, we can check on how the additional regularization given in
quation 26 helps in the example of two adjacent blocks, which was
ntroduced above. As before, the inversion domain coincides with
he modeling domain and comprises Nx � Ny � Nz�20 � 20 � 9

3600 rectangular cells, extending to a depth of 32 km. Again, we
over the surface �z�0� of the inversion domain with 80 MT sites
NS�80�. The coordinates of these sites are exactly the same as be-
ore �see Figure 6�. For these sites, we simulate data at frequencies of
0�3, 3.3 � 10�3, and 10�2 Hz �NT�3� and add 1% noise to the
imulated data.
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For these data, we compare results from two versions of our in-
erse problem solution, one without the additional regularization
����l� used as the gradient� and another with the additional regular-
zation �g̃�l� used as the gradient�. Our initial-guess conductivity is
0 ohm-m for the whole inversion domain, assuming that the out-
ide conductivity coincides with the true background for both of
hese solutions.

For the inversion with the additional regularization, we introduce
wo extra parameters ax and ay in the right-hand side of equation 28.
alues of these parameters that are too large deliver an overly
mooth resistivity image, not allowing a sufficiently small data mis-
t �d. Therefore, to reach a satisfactory value of the data misfit, we
se a sequence of decreasing parameters ax and ay, similar to the re-
uction of the regularization parameter �.

First, we choose ax�ay �3 and then gradually diminish the val-
es of these parameters. With the first values, we run 10 iterations,
hange them to ax�ay �2 for 20 iterations, then ax�ay �1 for an
dditional 20 iterations, and finally the final 100 iterations without
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egularization. We tried various values of ax and ay, but all of these
xperiments show that the exact values are not critical for the inver-
ion results.

Comparison of the inversion results with and without additional
egularization is shown in Figure 7. The result with the additional
egularization is much more similar to the true model. Positions and
esistivity values of the anomalies are reasonably well matched. The
ocation of the interface between conductor and resistor is found.

ith depth, the image becomes smoother and the conductor extends
lightly deeper, but this can be expected for MT.

In Figure 9, we compare the convergence curves for the inversions
ith and without the additional regularization. The inversion
ithout the additional regularization converges to a data misfit

d of 11. The data misfit for the inversion with the addition-
l regularization drops to 2.5, resulting in a total time of 18.5 hours
n a P4 2.8-GHz/512-RAM laptop. A single calculation of
he penalty function together with its gradient takes about 7

inutes.

z: 25−32 km

x (km)
0 40

40

Figure 7. Comparison of the inversion results with
and without additional regularization. Each row
presents horizontal �x-y� slices through the model
starting from the top left to the bottom right. The
first and fourth rows correspond to the result of the
inversion without additional regularization; the
second and fifth rows correspond to the inversion
with the additional regularization; and the third and
sixth rows are the true model. Three frequencies
and 80 MT sites were used.
m
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CONCLUSION

We have developed a novel approach to 3D MT inversion. Our ap-
roach is based on a limited-memory QN optimization method. The
ain advantage of this method, compared to other Newton optimi-

ation techniques, is the storage requirement: Only n pairs of vec-
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igure 8. The location of 80 MT sites plotted on top of the upper lay-
r of the recovered image.
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igure 9. Convergence curves for the inversions without �gray line�
nd with �black line� additional regularization described in equa-
ions 26 and 28. Three frequencies and 80 MT sites were used.
cp
ors must be stored in memory. This advantage makes it possible to
andle large-scale problems, such as 3D MT inversion. As for most
ther types of optimization methods, the limited-memory QN opti-
ization requires calculation of the gradient of the penalty function
.
We developed and implemented the adjoint method to derive ex-

licit expressions for calculating the gradients of the data misfit. Our
evelopment is quite general and is not limited to magnetotellurics
lone. It can be applied to a variety of EM problems, such as marine
ontrolled-source EM and well induction logging. Because the solu-
ion of the 3D MT inverse problem is nonunique, we need an appro-
riate regularization approach. We suggest Tikhonov regularization,
hich is based on the finite-difference approximation of the Laplace
perator, assuming continuity of the gradient at the boundary of the
nversion domain.Another important part of our inversion technique
s the choice of the regularization parameter �.

Our synthetic tests with a suite of standard models demonstrate
hat with pure Tikhonov regularization we achieve satisfactory re-
ults only with dense site coverage. Generally speaking, though, we
re satisfied by the software developed and the results of our model
xperiments. For the conductive dike model, for example, we can re-
over reasonably the true resistivity image. For the more complicat-
d model with two adjacent blocks, our findings are controversial.
n the one hand, we achieve relatively good results with dense MT

ites coverage. At the same time, for a coarser coverage our inver-
ion solution cannot “see” through numerical cells not covered by

T sites. This conclusion implies that the Tikhonov regularization,
hich we include in our inversion solution, is not powerful enough

o suppress the nonsmoothness of the resistivity image, especially
or the upper part of the model. To construct reliable resistivity imag-
s, one must put stronger constraints on the model parameters —
tronger than those initially imposed by traditional Tikhonov regu-
arization. We suggest using an additional regularization based on
moothing the gradients of the penalty function. Applying such an
pproach improves the results dramatically, although some artifacts
re still present. A possible explanation is that our regularization is
oo simple and a more complicated one must be applied.

In the future, a closer examination of the implemented regulariza-
ion and an investigation of possible alternatives could show how

uch we can improve the efficiency of our approach. One extension
ould be applying the automatic relaxation scheme to the regular-

zation. So far, we adjust the value of the regularization parameter �
anually at different stages of the inversion, based on our experi-

nce. This is time consuming because the inversion must be stopped
nd the convergence examined manually and restarted with the new
alue. An automatic scheme would accelerate this process, even
hough human experience and judgment can never be replaced fully.

Another important improvement would be introducing the static
hift into the penalty function of equation 1. We also plan to apply
ur inversion scheme to an experimental data set. However, previ-
us examples from other 3D MT inversion software developers indi-
ate that successful verification of the inversion technique even on a
ingle practical data set is a complex task and might take some time.
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APPENDIX A

HOW TO MEASURE THE MISFIT

The predicted Z and observed D impedances �at a given MT site
nd at a discrete period� are 2 � 2 matrices, not scalars. So the ques-
ion is how to measure the distance ��Z , D� between them to define
proper form of misfit �d. The answer is not obvious. A natural way

o define such a distance is to consider the matrix A�Z�D and its
nduced matrix norm

�A�2 � max
�Au�2

�u�2
, �A-1�

here �u�2���u1�2� �u2�2 for any vector u� �u1 , u2�T, and define
�Z , D�� �Z�D�2. It can be shown that for any matrix A,

�A�2 � ��1, �A-2�

here �1 is the largest �real� eigenvalue of Hermitian matrix Ā
T
A.

oreover, for a 2 � 2 matrix A, it follows that

��A�2�2 �
1

2
�tr�Ā

T
A� � �tr�Ā

T
A�2 � 4 det�Ā

T
A�� ,

�A-3�

here

tr�Ā
T
A� � �Axx�2 � �Axy�2 � �Ayx�2 � �Ayy�2 �A-4�

nd det�Ā
T
A� are, respectively, the trace and determinant of Ā

T
A.

Theoretically, we are looking for equation A-3. But it is too com-
licated �i.e., not quadratic� to be considered as a proper form of the
isfit function. Somehow, we must simplify it.

From equation A-3 it follows that

1

2
tr�Ā

T
A� 	 ��A�2�2 	 tr�Ā

T
A� . �A-5�

he inequalities given in equation A-5 mean that distance ��Z , D�
�Z�D�2 is controlled by the trace tr�Ā

T
A�, where A�Z�D.

his trace can be chosen to measure the misfit as

�d �
1

2
tr�Ā

T
A� , �A-6�

lthough tr�Ā
T
A� is not associated with any matrix norm itself.

APPENDIX B

MT IMPEDANCE AND ITS DERIVATIVE

The MT impedance Z jn�Z�r j , �n� at the jth site r j and the nth
requency � is defined as a 2 � 2 matrix
n
Z jn � �Zxx Zxy

Zyx Zyy
	

jn

hat satisfies the matrix equation as

E jn � Z jnH jn, �B-1�

here r j� �xj , yj , zj� is the position of jth MT site �j�1 , … , NS�
nd �n�2� /Tn is the nth frequency �n�1 , … , NT�. Matrices E jn

nd H jn of equation B-1 are defined as

E jn � pEn�r j� , H jn � pHn�r j� , �B-2�

here

p � �1 0 0

0 1 0
	

s the projection matrix and where

En�r� � �Ex
�1� Ey

�1� Ez
�1�

Ex
�2� Ey

�2� Ez
�2� 	

n

T

nd

Hn�r� � �Hx
�1� Hy

�1� Hz
�1�

Hx
�2� Hy

�2� Hz
�2� 	

n

T

re functions of Cartesian coordinates r� �x , y , z�. Here, the super-
cript 1 or 2 denotes polarization of the source

Jn�r� � �Jx
�1� Jy

�1� Jz
�1�

Jx
�2� Jy

�2� Jz
�2� 	

n

T

,

uperscript T means transpose, and vectors E� �Ex , Ey , Ez�T and H
�Hx , Hy , Hz�T are electric and magnetic fields. By definition, 3
2 matrices En�r� and Hn�r� �n�1 , … , NT� are composed of EM

elds; hence, they satisfy 2 � NT systems of Maxwell’s equations,
ritten as

� � Hn � � �r�En � Jn �B-3a�

nd

� � En � i�n�Hn, �B-3b�

here � � Hn and � � En denote 3 � 2 matrices

�� � H�1�

� � H�2� 	
n

T

, �� � E�1�

� � E�2� 	
n

T

,

espectively, with n�1 , … , NT. From equation B-1, it immediately
ollows that

Z jn � E jnH jn
�1, �B-4�

here H jn
�1 is the inverse of matrix H jn. Applying the chain rule of

ifferentiation to equation B-4, one can derive

Z jn,k � �E jn,k � Z jnH jn,k�H jn
�1, �B-5�

here we denote Z jn,k��Z jn/�� k, E jn,k��E jn/�� k, and H jn,k

�H jn/�� k �k�1 , … , N�. Further, from equations B-2 and B-3 it
ollows that
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E jn,k � penk�r j� , H jn,k � phnk�r j� , �B-6�

here 3 � 2 matrices enk�r� and hnk�r� satisfy 2 � NT � N systems
f the Maxwell equations

� � hnk � � �r�enk � jnk �B-7a�

nd

� � enk � i�n�hnk, �B-7b�

ith given electric current densities

jnk � � kEn. �B-8�

o derive equations B-7 and B-8 from equation B-3, one might wish
o decompose conductivity as � �r���k�1

N � k� k�r�, where

� k�r� � �1, r � Vk

0, r � Vk
�

nd Vk is the volume occupied by the kth cell and then differentiate
quations B-3 over � k. We assume that �Jn/�� k�0. In equations
-7 and B-8, matrices

enk � �ex
�1� ey

�1� ez
�1�

ex
�2� ey

�2� ez
�2� 	

nk

T

nd

hnk � �hx
�1� hy

�1� hz
�1�

hx
�2� hy

�2� hz
�2� 	

nk

T

re functions of Cartesian coordinates r� �x , y , z�. Thus, to calcu-
ate the MT impedance derivatives �Z/�� k�r j , �n� for the whole set
f triple indices ��j , n , k� : j�1 , … , NS; n�1 , … , NT; k

1 , … , N	 one should solve 2 � NT � �N�1� forward problems
iven in equations B-3 and B-7.

APPENDIX C

ADJOINT METHOD

In this appendix, we derive the key equation 14. To do this, we re-
rite equations B-7 and 11 as

� � � � enk � i�n�� �r�enk � i�n�� kEn �C-1�

nd

� � � � un � i�n�� �r�un � i�n��jn
ext � � � hn

ext� .

�C-2�

ultiplying equation C-1 by un
T and equation C-2 by enk

T and integrat-
ng the difference of the resulting equations over the whole 3D
pace, we obtain

�
R3

tr�enk
T jn

ext � enk
T � � hn

ext�dV � �
Vk

tr�un
TEn�dV ,

�C-3�

here Vk is the volume occupied by the kth cell, dV�dxdydz. To de-
ive equation C-3, one might wish to use the known Green’s formula
R3�vT � � w�wT � � v�dV�0, which is valid for any complex-
alued vector fields v and w. Then, we modify the left side of equa-
ion C-3 as

�
R3

tr�enk
T jn

ext � i�n�hnk
T hn

ext�dV � �
Vk

tr�un
TEn�dV ,

�C-4�

sing tr�enk
T � � hn

ext�� tr��� � enk�Thn
ext�� i�n�tr�hnk

T hn
ext�. Substi-

uting equations 12 and 13 for sources jn
ext and hn

ext into equation C-4
nd using the property that �R3v�r� �r�r j�dV�v�r j� for any vec-
or field v, one derives

�
j�1

NS

� jntr�Ā jn
T �penk�r j� � Z jnphnk�r j��H jn

�1�

� �
Vk

tr�un
TEn�dV �C-5�

ecause tr�BC�� tr�CB�, tr�BT�� tr�B�, and �BC�T�CTBT for any
air of matrices B and C. Comparing equations C-5, B-6, and 9, one
oncludes immediately that

��d

�� k
� Re��

n�1

NT �
Vk

tr�un
TEn�dV� . �C-6�

APPENDIX D

A MORE GENERAL MISFIT AND ITS
DERIVATIVE

Equation 2 is written for a particular problem where the data mis-
t �d includes the impedance difference matrices A jn, whose entries
re weighted equally by the values �� jn. The generalization of our
heory for the case of the individually weighted entries of A jn is not
traightforward and is therefore beyond this paper’s scope. The main
ifficulty is in deriving equations for the derivatives ��d/�� k. How-
ver, it still is possible to extend the theory to the more general case if
he data misfit

�d �
1

2 �
j�1

NS

�
n�1

NT

tr�Ā̃ jn
T Ã jn

� �D-1�

s written in terms of the weighted matrices

Ã jn � �wxxAxx wxyAxy

wyxAyx wyyAyy
	

jn
, �D-2�

here the tilde means weighting by real-valued weights
xx , wxy , wyx , wyy. If we assume additionally that wxy �wyx, then it is
asy to prove that B̃T � BT̃ and tr�B̃C�� tr�BC̃� for any B and C.
hese simple properties allow us to obtain the relevant alterations of
quations presented in this paper and could be used to derive equa-
ion 14 for ��d/�� k.

It can be shown that equations 8, 9, 12, 13, and C-5, respectively,
lter to the following forms:



a

w

A
i

A

A

A

—

A

B

C

D

F

H

H

M

M

M

M

M

N

N

N
P

R

R

S

T

W

W

W

Z

3D MT inversion using an LMQN method F57

D
ow

nl
oa

de
d 

05
/0

8/
14

 to
 1

43
.2

10
.1

03
.1

82
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

��d

�� k
� Re��

j�1

NS

�
n�1

NT

tr�Ā̃ jn
T � Z̃ jn

�� k
�� , �D-3�

��d

�� k
� Re��

j�1

NS

�
n�1

NT

tr�Ā̂ jn
T �E jn,k

� Z jnH jn,k�H jn
�1�� , �D-4�

jn
ext � �

j�1

NS

pTĀ̂ jnH jn
�T �r � r j� , �D-5�

hn
ext � �

1

i�n�
�
j�1

NS

pTZ jn
T Ā̂ jnH jn

�T �r � r j� ,

�D-6�

nd

�
j�1

NS

tr�Ā̂ jn
T �penk�r j� � Z jnphnk�r j��H jn

�1� � �
Vk

tr�un
TEn�dV ,

�D-7�

here

Â jn � �wxx
2 Axx wxy

2 Axy

wyx
2 Ayx wyy

2 Ayy
	

jn

. �D-8�

ll other equations presented in the paper remain the same, includ-
ng equation 14.
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