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S U M M A R Y
Robust magnetotelluric response function estimators are now in standard use in electromagnetic
induction research. Properly devised and applied, these have the ability to reduce the influence
of unusual data (outliers) in the response (electric field) variables, but are often not sensitive
to exceptional predictor (magnetic field) data, which are termed leverage points. A bounded
influence estimator is described which simultaneously limits the influence of both outliers and
leverage points, and has proven to consistently yield more reliable magnetotelluric response
function estimates than conventional robust approaches. The bounded influence estimator
combines a standard robust M-estimator with leverage weighting based on the statistics of
the hat matrix diagonal, which is a standard statistical measure of unusual predictors. Further
extensions to magnetotelluric data analysis are proposed, including a generalization of the
remote reference method which utilizes multiple sites instead of a single one and a two-stage
bounded influence estimator which effectively removes correlated noise in the local electric
and magnetic field variables using one or more uncontaminated remote references. These
developments are illustrated using a variety of magnetotelluric data.
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1 I N T RO D U C T I O N

The magnetotelluric (MT) method utilizes naturally occurring fluc-
tuations of electromagnetic fields observed at Earth’s surface to map
variations in subsurface electrical conductivity. The fundamental
datum in MT is the site-specific, frequency-dependent tensor rela-
tionship between the measured electric and magnetic fields. Under
general conditions on the morphology of the external source fields
(e.g. Dmitriev & Berdichevsky 1979), in the absence of noise, and
with precise data, this may be written

E = ZB (1)

where E and B are two-vectors of the horizontal electric and mag-
netic field components at a specific site and frequency, and Z is
the second rank, 2 × 2 MT response tensor connecting them. The
solution to (1) at a given frequency is

Z = (EBH)(BBH)−1 (2)

where the superscript H denotes the Hermitian (complex conju-
gate) transpose and the terms in parentheses are the exact cross-
and autopower spectra. Similar linear relationships can be derived
between the vertical and horizontal magnetic field variations. Since
the methodology is nearly identical, this paper will focus only on
the MT case.

When E and B are actual measurements, (1) and (2) do not hold
exactly due to the presence of noise, and it becomes necessary to

estimate both Z and its uncertainty δZ in a statistical manner. Con-
ventional MT data processing has historically been based on clas-
sical least-squares regression approaches and Gaussian statistical
models (e.g. Sims et al. 1971) which are well known to be sensitive
to small amounts of unusual data, uncorrelated noise in the mag-
netic field variables and inadequacies of the model description itself.
This often leads to estimates of Z which are heavily biased and/or
physically uninterpretable, and can affect estimates of δZ even more
seriously.

In recent years this situation has been dramatically improved by
three developments. First, the remote reference method (Gamble
et al. 1979), in which the horizontal magnetic fields recorded simul-
taneously at an auxiliary site are combined with the fields at the local
site, has proved to be quite effective at eliminating bias from uncor-
related local magnetic field noise. Second, a variety of data-adaptive
robust weighting schemes, sometimes applied in conjunction with
remote referencing, have been developed to eliminate the influence
of data corresponding to large residuals which are usually called out-
liers (Egbert & Booker 1986; Chave et al. 1987; Chave & Thomson
1989; Larsen 1989; Sutarno & Vozoff 1989, 1991; Larsen et al.
1996; Egbert & Livelybrooks 1996; Egbert 1997; Oettinger et al.
2001; Smirnov 2003). The superior performance of robust methods
was demonstrated in the comparison study of Jones et al. (1989),
and these are now in general use in work on MT problems. Third, it
is now recognized that conventional distribution-based estimates of
the errors in the MT response tensor elements are often biased (e.g.
Chave & Jones 1997), and a non-parametric jackknife method has
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been introduced (Chave & Thomson 1989) and rigorously justified
(Thomson & Chave 1991) to eliminate this problem.

However, there remain unusual data sets, typically due either to
natural source field complexity or man-made noise, where even ro-
bust remote reference methods sometimes fail to yield physically
interpretable MT responses. For example, Schultz et al. (1993) and
Garcia et al. (1997) noted the serious bias that could be produced
by auroral substorm source fields of a short spatial scale. MT ten-
sor bias from cultural noise, especially that from DC electric rail
systems, has been widely documented (Szarka 1988; Junge 1996;
Larsen et al. 1996; Egbert et al. 2000). Some types of mid-latitude
sources (notably those from Pc3 geomagnetic pulsations) have
short and temporally variable spatial scales (Andersen et al. 1976;
Lanzerotti et al. 1981) which can also alter MT responses (Egbert
et al. 2000). For such situations, extensions to robust processing have
been proposed. Schultz et al. (1993) and Garcia et al. (1997) ap-
plied a bounded influence estimator introduced by Chave & Thom-
son (1992) and further developed by Chave & Thomson (2003)
and in this paper to minimize the influence of extreme magnetic
field data which do not produce large residuals, and hence may be
missed by robust estimators. Larsen et al. (1996) and Oettinger et al.
(2001) proposed multiple transfer function methods to remove cul-
tural noise using distant, uncontaminated sites as references. Both
methods are special cases of the two-stage processing that is intro-
duced in this paper. Egbert (1997) introduced a robust multivariate
principal components approach to detect and characterize coherent
cultural noise. This enables robust estimators to be tailored to the
specific coherent noise characteristics derived from multiple-station
data when these are available.

In a further attempt to deal with MT processing problems, this pa-
per updates Chave & Thomson (1989) through extensions to robust
remote reference MT data processing which can control problems
from both outliers in the response (electric field) and extreme data
(leverage points) in the predictor (magnetic field) variables, as well
as eliminate correlated noise in the response and predictor data.
The next section contains a brief discussion of spectral analysis
principles directly relevant to this paper. Section 3 reviews robust
estimation as applied to MT data. Section 4 discusses the role of the
hat matrix as a leverage indicator. Section 5 introduces a general-
ization of the remote reference method utilizing multiple reference
sites. Section 6 discusses bounded influence estimation as a means
to simultaneously control both outlier and leverage effects. Sec-
tion 7 describes bounded influence two-stage MT processing which
can eliminate correlated noise in the local electromagnetic fields.
Section 8 outlines some pre-processing steps that can improve MT
processing results under special circumstances. Section 9 discusses
statistical verification of robust or bounded influence procedures.
Section 10 illustrates many of these concepts using a variety of field
and synthetic MT data. Finally, Section 11 contains a discussion of
a few remaining issues.

2 D I S C O U R S E O N S P E C T R A L
A N A LY S I S

It is assumed that contemporaneous, finite time sequences of the
electric and magnetic field variations from one or more sites are
available. It is also presumed that the time-series have been digi-
tized without aliasing and edited to remove gross errors like boxcar
shifts or large spikes (although well-designed processing algorithms
can often accommodate these problems). Finally, it is assumed that
serious long-term trends have been removed by high-pass filtering
or least-squares spline fitting procedures.

Because outlier detection is facilitated by comparing spectra es-
timated over distinct subsections in time, robust MT processing is
typically based on the Welch overlapped section averaging (WOSA)
approach (Welch 1967; see Percival & Walden 1993, Section 6.17,
for a detailed discussion). The basic algorithm is computationally
straightforward. After time-domain pre-whitening of each time-
series and starting at the lowest frequency, a subset length that is of
the order of a few over the frequency of interest is selected. The data
sequences are then divided into subsets and each is tapered with a
data window. Data sections may be overlapped to improve statistical
efficiency. Fourier transforms are taken, pre-whitening is corrected
for, and the instrument response is removed. In the context of this
paper, the data are these Fourier transforms of the windowed data
from each section at a single frequency. The section length is then
repetitively reduced as higher frequencies are addressed. A variable
section length WOSA analysis of this type is philosophically akin to
wavelet analysis (e.g. Percival & Walden 2000) in that the timescale
of the basis functions is changed along with the frequency scale to
optimize resolution.

It is important to understand the bias (i.e. spectral leakage) and
resolution properties of the selected data taper and design a fre-
quency sampling strategy that accommodates both. Historically, data
tapers have been chosen largely on the basis of computational sim-
plicity or ad hoc criteria (e.g. Harris 1978). However, an optimal
class of data tapers can be obtained by considering those finite time
sequences (characterized by a length N) which have the largest possi-
ble concentration of energy in the frequency interval [−W , W ]. The
ensuing resolution bandwidth is 2W . Work on the continuous-time
version of this problem goes back to Chalk (1950), and culminated
in a set of landmark papers by Slepian & Pollak (1961) and Landau
& Pollak (1961, 1962). The discrete time problem was solved by
Slepian (1978), and the solution is the zeroth-order discrete prolate
spheroidal or Slepian sequence with a single parameter, the time–
bandwidth product τ = NW . Numerical solutions for the Slepian
sequences are obtained by solving an eigenvalue problem; a numer-
ically robust tridiagonal form is given by Slepian (1978) and a more
accurate variant is described in Appendix B of Thomson (1990).
The superiority of Slepian sequences as data tapers has been thor-
oughly documented (e.g. Thomson 1977, 1982; Percival & Walden
1993), and these are employed exclusively in the present work. The
time–bandwidth product τ determines both the amount of bias pro-
tection outside the main lobe of the window and the main lobe
half-width τ /N (Fig. 1). A useful range of τ for MT processing is
typically 1 to 4. A τ = 1 window provides limited (about 25 dB) bias
protection but yields raw estimates that are essentially independent
of the standard discrete Fourier transform (DFT) grid with frequen-
cies separated by 1/N . In this instance, pre-whitening is essential to
avoid spectral bias. A τ = 4 window provides over 100 dB of bias
protection but yields raw estimates that are highly correlated over
[f − W , f + W ], where f is the frequency of interest. As a rule of
thumb, frequencies which are spaced τ apart on the DFT grid may
be taken as independent; Thomson (1977) gives a more quantitative
discussion of this point. It is also important to avoid frequencies
within τ of the DC value, as these are typically contaminated by un-
resolved low frequency components. The amount that data sections
can be overlapped without introducing data dependence also varies,
ranging from 50 to 71 per cent as τ ranges from 1 to 4. Percival
& Walden (1993, Section 6.17) give a quantitative treatment of this
issue.
Pre-whitening is most easily achieved by filtering with a short au-
toregressive (AR) sequence fit to the time-series. Standard time-
domain AR estimators are based on least-squares principles; for
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Figure 1. The spectral window (absolute square of the Fourier transform
of the data taper) for 100 point Slepian sequences with time–bandwidth
products of (from left to right) 1, 2, 3 and 4. As the time–bandwidth rises, the
sidelobe suppression increases but the width of the mainlobe (and hence the
correlation of nearby frequencies on the standard discrete Fourier transform
grid) also rises.

example, the Yule–Walker equations (Yule 1927; Walker 1931) may
be solved for the autocovariance sequence (acvs), from which the
AR filter may be obtained using the Levinson–Durbin recursion
(Levinson 1947; Durbin 1960). In the presence of extreme data,
such least-squares estimators for the acvs are often seriously biased,
yielding AR filters which may either be unstable (i.e. the zeros of
the filter z-transform lie outside the unit circle) or highly persistent
(i.e. the zeros of the filter z-transform lie inside but very close to the
unit circle). In such instances, the filter may actually enhance spec-
tral leakage by increasing the dynamic range of the data spectrum,
which is opposite to the desired outcome. A robust approach to acvs
estimation is essential to avoid these difficulties. A simple robust AR
estimator may be obtained using acvs estimates obtained from the
Fourier transform of a robust estimate of the power spectrum. The
robust power spectrum may be computed using the WOSA method
with a low bias (e.g. the Slepian sequence with τ = 4) data taper and
taking the frequency-by-frequency median rather than mean of the
raw section estimates. The AR filter follows from the robust acvs
using the Levinson–Durbin recursion. The importance of robust AR
filter estimation for pre-whitening is illustrated in Section 10.

3 RO B U S T R E S P O N S E F U N C T I O N
E S T I M AT I O N

In the standard linear regression model for the row-by-row solution
of (1), the equivalent set of matrix equations is

e = bz + ε (3)

where there are N observations (i.e. N Fourier transforms of N inde-
pendent data sections at a given frequency), so that e is the response
N-vector, b is the N × 2, rank-2 predictor matrix, z is the solution
2-vector and ε is an N-vector of random errors. The error power εHε,
or equivalently, the L2 norm of the random errors, is then minimized
in the usual way, yielding

ẑ = (bH
b)−1(bHe) (4)

The elements of bH b and bHe are the averaged estimates of the auto-
and cross-power spectra based on the available data. The regression

residuals r are the differences between the measured values of the
response variable e and those predicted by the linear regression
ê = bẑ, and serve as an estimate for the random errors ε.

The conditions on the variables in (3) and their moments that
yield a least-squares solution (4) which is optimal in a well-defined
sense are given by the Gauss–Markov theorem of classical statistics
(e.g. Stuart et al. 1999 Chapter 29). The textbook version of the
Gauss–Markov theorem applies when the predictor variables in (3)
are fixed, but Shaffer (1991) has extended it to cover the cases where
the joint distribution of e and b is multivariate normal with unknown
parameters, the distribution of b is continuous and non-degenerate
but otherwise unspecified, or under mild conditions, when b is a
random sample from a finite population. It is as one of these cases
that (3) will be considered in this paper. Under these circumstances,
the linear regression solution (4) is the best linear unbiased estimate
when the residuals r are uncorrelated and share a common variance
independent of any assumptions about their statistical distribution
except that the variance must exist. In addition, if the residuals are
multivariate Gaussian, then the least-squares result is a maximum-
likelihood, fully efficient, minimum-variance estimate. These opti-
mality properties, along with the empirical observation that most
physical data yield Gaussian residuals, explain the appeal of a least
squares approach.

However, with natural source electromagnetic data, the Gauss–
Markov assumptions about the data and their error structure are
rarely tenable for at least three reasons. First, the residual variance
is often dependent on the data variance, especially when energetic
intervals coincide with source field complexity, as occurs for many
classes of geomagnetic disturbance. Second, the finite duration of
many geomagnetic events causes data anomalies to occur in patches,
violating the independent residual requirement. Third, due to marked
non-stationarity, frequent large residuals are much more common
than would be expected for a Gaussian model, and hence the residual
distribution is typically very long-tailed with a Gaussian centre. Any
one of these issues can seriously bias the least-squares solution (4)
in unpredictable and sometimes insidious ways; in the presence of
all three, problems are virtually guaranteed.

These observations have led to the development of procedures
which are robust, in the sense that they are relatively insensitive to
a moderate amount of bad data or to inadequacies in the model, and
that react gradually rather than abruptly to perturbations of either.
Robust statistics is an active area of research (e.g. Hampel et al.
1986; Wilcox 1997), and many of its techniques have been adapted
to spectral analysis beginning with the work of Thomson (1977).
Chave et al. (1987) presented a tutorial review of robust methods
in the context of geophysical data processing, and only an outline
relevant to the MT problem will be presented here.

The most suitable type of robust estimator for MT data is the M-
estimator which is motivated by analogy to the maximum-likelihood
method of statistical inference (e.g. Stuart et al. 1999, Chapter 18).
M-estimation is similar to least squares in that it minimizes a norm
of the random errors in (3), but the misfit measure is chosen so that
a few extreme values cannot dominate the result. The M-estimate
is obtained computationally by minimizing RHR, where R is an N-
vector whose ith entry is

√
ρ(ri/d), d is a scale factor and ρ(x) is

a loss function. The term ‘loss function’ originates in statistical de-
cision theory (e.g. Stuart & Ord 1994, Section 26.52), and loosely
speaking, yields a measure of the distance between the true and es-
timated values of a statistical parameter. For standard least squares,
ρ(x) = x2/2 and (4) is immediately recovered. More generally, if
ρ(x) is chosen to be − log f (x), where f (x) is the true probability
density function (pdf) of the regression residuals r which includes
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extreme values, then the M-estimate is maximum likelihood. In
practice, f (x) cannot be determined reliably from finite samples,
and the loss function must be chosen on theoretical or empirical
grounds. Details may be found in Chave et al. (1987) and Wilcox
(1997).

Minimizing RHR gives the M-estimator analogue to the normal
equations

b
H
� = 0 (5)

where Ψ is an N-vector whose ith entry is the influence function
ψ(x) = ∂ xρ(x) evaluated at x = ri/d. The solution to (5) is ob-
tained using iteratively reweighted least squares, so that at the kth
iteration, Ψ is replaced by v[k] r[k] where v[k] is an N × N diago-
nal matrix whose ith entry is v

[k]
i i = �(r [k−1]

i /d [k−1])/(r [k−1]
i /d [k−1]).

The weights are computed using the residuals and scale from the
previous iteration to linearize the problem; the solution is initialized
using the residuals r[0]

i and scale d[0]
i from ordinary least squares,

or for badly contaminated data, those from an L1 estimate obtained
using a linear programming algorithm. The weighted least-squares
solution of (5) corresponding to (4) is

ẑ∗ = (bH
vb)−1(bH

ve) (6)

Iteration ends when the solution does not change appreciably, typi-
cally after three to five steps. Since the weights are chosen to min-
imize the influence of data corresponding to large residuals in a
well-defined sense, the M-estimator is data adaptive.

A simple form for the weights is due to Huber (1964). This has
diagonal elements

vi i = 1 |xi | ≤ a

vi i = a

|xi | |xi | > a.
(7)

A value of a = 1.5 gives better than 95 per cent efficiency with
outlier-free Gaussian data. Downweighting of data with (7) begins
when | xi| = | ri/d| = a, so that the scale factor d determines which
of the residuals are to be regarded as large. It is necessary because
the weighted least-squares problem is not scale invariant without it,
in the sense that multiplication of the data by a constant will not
produce a comparably affine change in the solution.

The scale estimate must itself be robust, and is typically chosen
to be the ratio of the sample and theoretical values of some statistic
based on a target distribution. An extremely robust scale statistic
is the median absolute deviation from the median (MAD), whose
sample value is

SMAD = |r − r̃ |( N+1
2 ) (8)

where the subscript (i) denotes the ith order statistic obtained by
sorting the N values sequentially. The quantity r̃ is the middle order
statistic or median of r. The theoretical MAD is the solution σ MAD

of

F(µ̃ + σMAD) − F(µ̃ − σMAD) = 1/2 (9)

where µ̃ is the theoretical median and F denotes the target cumula-
tive distribution function (cdf).

The solution of (5) and hence the choice of d requires a target dis-
tribution for the residuals r. The data in MT processing are Fourier
transforms and therefore complex, but the complex Gaussian is not
necessarily the optimal choice. It is preferable to measure residual
size using its magnitude since this is rotationally (phase) invariant,
and Chave et al. (1987) showed that the appropriate distribution for
the magnitude of a complex number is Rayleigh. The properties of
the Rayleigh distribution are summarized in Johnson et al. (1994,

Chapter 10). A Rayleigh statistical model for the residuals will be
used exclusively in this paper.

Because the weights (7) fall off slowly for large residuals and
never fully descend to zero, they provide inadequate protection
against severe outliers. However, the loss function corresponding
to (7) is convex and hence convergence to a global minimum is as-
sured, making it safe for the initial iterations of a robust procedure to
obtain a reliable estimate of the scale. Motivated by the form of the
Gumbel extreme value distribution, Thomson (1977) and Chave &
Thomson (1989) suggested using the more severe weight function

vi i = exp(e−ξ2
) exp(−eξ (|xi |−ξ )) (10)

for the final estimate, where the parameter ξ determines the resid-
ual size at which downweighting begins and vii = 1 when xi =
0. The weight (10) is essentially like a hard limit at xi = ξ except
that the truncation function is continuous and continuously differen-
tiable. Chave et al. (1987) advocated setting ξ to the N th quantile of
the Rayleigh distribution which automatically increases the allowed
residual magnitude as the sample size rises. In an uncontaminated
population, one expects the largest residual to increase slowly (ap-
proximately as

√
log(N 2)), but if the fraction of contaminated points

α is constant, a level at the N(1 − α)th quantile would be more
appropriate.

To summarize, robust processing of MT data utilizes the Fourier
transforms of comparatively short sections of a long data series,
where the section length is chosen to be of order a few over the
frequency of interest. Data sections may be overlapped depending
on the data window characteristics. At each frequency, an initial
least-squares solution is obtained from (4) and used to compute
the residuals r in (3) as well as the scale d from the ratio of (8)
and (9) using a Rayleigh model for the residual distribution. An
iterative procedure is then applied using (6) with the Huber weights
(7), where the residuals from the previous iteration are used to get
the scale and weights. This continues until the weighted residual
power rHvr does not change below a threshold value, typically 1–
2 per cent. The scale is then fixed at the final Huber weight value
and several iterations are performed using the more severe weight
(10), again terminating when the weighted residual power does not
change appreciably.

The algorithm outlined here is very similar to that introduced by
Chave & Thomson (1989) except that the section length is variable
and always maintained so that the frequency of interest is a few over
the section length. It has been empirically shown that robust pro-
cedures are most effective at eliminating outliers without a serious
reduction in statistical efficiency when this methodology is used.
With variable section lengths, there is no need for band averaging,
and it is recommended that its use be avoided to prevent errors on
the confidence intervals of the response tensor caused by correla-
tion. In addition, use of the interquartile distance for a scale estimate
as discussed by Chave & Thomson (1989) has been discontinued
since it has proven to be less robust than the MAD. Robust esti-
mation as described here is capable of yielding reliable estimates
of the MT response tensor in a semi-automatic manner for most
data sets.

Finally, an essential feature of any method for computing MT
responses is the provision of both an estimate and a measure of its
accuracy. Traditionally, confidence intervals on the MT response are
dependent on explicit statistical models which are ultimately based
on a Gaussian distribution. In addition to problems in computing
the correct number of degrees of freedom in the presence of corre-
lated spectral estimates and the practical requirement for numerous
approximations to yield a tractable result, these parametric methods
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are even more sensitive to outliers or other data anomalies than the
least-squares estimates themselves. For a more complete discussion
of the limitations of parametric uncertainty estimates in a spectral
analysis context, see Thomson & Chave (1991). This has led to
the increasing use of non-parametric confidence interval estimators
which require fewer distributional assumptions, among which the
simplest is the jackknife. Thomson & Chave (1991) give a detailed
description of its implementation and performance in spectral anal-
ysis, while Chave & Thomson (1989) describe its use for estimating
confidence intervals on the MT response tensor. This requires only
that N estimates of the response tensor elements obtained by delet-
ing a single data section at a time from the ensemble be computed
and saved for later use. In a regression context, the jackknife offers
the advantage that it is insensitive to violations of the assumption of
variance homogeneity which is implicit to parametric error estimates
(Hinkley 1977). The jackknife also yields conservative confidence
interval estimates in the sense that they will tend to be slightly too
large rather than too small (Efron & Stein 1981), as documented for
MT by Eisel & Egbert (2001). Finally, the jackknife offers a way
to propagate error through either linear (e.g. rotation) or non-linear
transformations of the MT response tensor which might otherwise
be completely intractable; tensor decomposition to remove galvanic
distortion as described in Chave & Smith (1994) is a prime example
of the latter.

4 T H E H AT M AT R I X A N D L E V E R A G E

The hat or predictor matrix is an important auxiliary quantity in
regression theory, and is widely used to detect unusually influential
(i.e. high-leverage) data (Hoaglin & Welsch 1978; Belsley et al.
1980; Chatterjee & Hadi 1988). For the regression problem defined
by (3), the N × N hat matrix is given by

H = b(bH
b)−1b

H (11)

The residual r is the difference between the observed electric field
e and the value ê predicted from a linear regression on b. It follows
that

ê = He (12)

and hence

r = (I − H)e (13)

where I is the identity matrix. The hat matrix is a projection matrix
which maps e onto ê. The diagonal elements of H (denoted by
hii) are a measure of the amount of leverage which the ith value
of the response variable ei has in determining its corresponding
predicted value êi independent of the actual size of ei, and this
leverage depends only on the predictor variables b. The inverse of
hii is in effect the number of observations in b which determine êi .

Some relevant properties of the hat matrix are described by
Hoaglin & Welsch (1978). First, because it is a projection matrix,
H is Hermitian and idempotent (H2 = H). These two characteristics
can be used to show that the diagonal elements satisfy 0 ≤ hii ≤ 1.
Second, the eigenvalues of a projection matrix are either 0 or 1, and
the number of nonzero eigenvalues equals its rank. Since rank(H)
= rank(b) = p, where p is the number of columns in b (usually 2
for MT), the trace of H is p. Thus, the expected value of hii is p/N .
Finally, the two extreme values 0 and 1 have special meaning. When
hii = 0, then êi is fixed at zero and not affected by the corresponding
datum in e. If hii = 1, then the predicted and observed values of the
ith entry in e are identical, and the model fits the data exactly. In this

Table 1. Critical Points of Ix(2, N − 2) for N � 2.

η = xN /2 Ix

1 0.594
2 0.909
2.365 0.95
2.777 0.975
3.307 0.99
4.593 0.999
5.841 0.9999
7.064 0.99999

instance, only the ith row of b has any influence on the regression
problem, leading to the term high (or extreme) leverage to describe
that point. More generally, if hii � p/N , the ith row of b will ex-
ert undue influence (or leverage) on the solution ẑ in an analogous
manner to an outlier in e. Thus, the hat matrix diagonal elements are
a measure of the amount of leverage exerted by a predictor datum.
The factor by which the hat matrix diagonal elements must exceed
the expected value to be considered a leverage point is not well de-
fined, but statistical lore suggests that values which are more than
two to three times p/N are a concern (Hoaglin & Welsch 1978).

In Chave & Thomson (2003), the exact distribution of the diagonal
elements of (11) for complex Gaussian data was derived from first
principles, extending previous work which yielded only asymptotic
forms for real data (e.g. Rao 1973; Belsley et al. 1980; Chatterjee
& Hadi 1988). The result is the beta distribution β (hii, p, N − p),
where p is the number of predictor variables or columns in b and N
is the number of data. The cumulative distribution function is the
incomplete beta function ratio Ix(p, N − p), and a series expression
suitable for numerical solution is given in Chave & Thomson (2003).
For the MT situation (p = 2) and when N �2, some critical valuesη,
where x = η 2/N and Ix = α, are given in Table 1. The table shows
that the probability that a given hat matrix diagonal element will
exceed the expected value of 2/N by a factor of 4.6 is only 0.001.
However, data whose corresponding hat matrix diagonal is only
twice the expected value will occur with probability 0.091. Rejecting
values at this level will typically remove a significant number of valid
data unless N is fairly small. Chave & Thomson (2003) advocate
rejecting data corresponding to hat matrix diagonal elements larger
than the inverse of the beta distribution at a reasonable probability
level. For example, selecting the 0.95 level will carry a 5 per cent
penalty for Gaussian data, yet will effectively protect against large
leverage points. In data sets whose hat matrix is longer tailed than
beta (a common occurrence with MT data from auroral latitudes),
larger cut-off values should be used.

It is important to note that using the hat matrix diagonal elements
as leverage statistics differs considerably from a simpler approach
based on some measure of the relative variance or power in the rows
of b. To see this, consider (11) with p = 2, as for a conventional
single-site MT sounding. Let Si

jk denote the power between the j,

k variables in the ith row of b and let ¯Sjk be the averaged cross
spectrum of the j, k variables obtained from all N data in b. The ith
diagonal entry in (11) may be written

hii = 1

N (1 − γ 2)

[
Si

xx

¯Sxx

+ Si
yy

¯Syy

− 2γ 2Re

(
Si

xy

¯Sxy

)]
(14)

where γ 2 is an estimate of the squared coherence between bx and
by derived from the averaged cross- and autopowers. The expected
value of the right hand side of (14) is easily seen to be 2/N . In the
special case where γ 2 → 0 so that bx and by are uncorrelated, (14)
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reduces to

h0
i i =

(
Si

xx∑N
i=1 Si

xx

+ Si
yy∑N

i=1 Si
yy

)
(15)

which is just the sum of the ratios of the power in the ith row to the
total power in each component of b. As γ 2 increases, (14) may be
rewritten as

hii = 1

1 − γ 2

[
h0

i i − 2γ 2Re

(
Si

xy∑N
i=1 Si

xy

)]
. (16)

This quantity may be either larger or smaller than (15), depending
on the size of γ 2 and the size and sign of the ratio of the ith row
cross-power to the total cross-power. Thus, high leverage points may
correspond to rows of b where γ 2 is small and the power in one or
both of the predictor variables is much larger than the average power,
or to rows of b where γ 2 is non-zero and the cross-power between
bx and by is much larger than the average cross-power. Intermediate
situations with high leverage are also possible.

This discussion has centred on the diagonal elements of the hat
matrix, but the off-diagonal entries also have a leverage interpreta-
tion. The i, j off-diagonal element of H gives the amount of leverage
which the jth response variable ej has on the ith predicted variable
êi , and the leverage again depends only on the predictor variables b.
Thus, in the MT context of this paper, the off-diagonal elements of
H give the amount of leverage exerted by magnetic field data which
are non-local in time, and hence are expected to be small unless
there is significant non-stationarity. The off-diagonal elements of H
will not be considered further in this paper.

The hat matrix and its properties easily generalize to the robust
algorithm of (5)–(6) using the definition in (11)

H = √
vb(bH

vb)−1b
H√

v (17)

where
√

v is the diagonal matrix of robust weights with entries√
vi i .

5 A G E N E R A L I Z AT I O N O F T H E
R E M O T E R E F E R E N C E M E T H O D

Consider the regression equation for the MT response (3), and as-
sume that an auxiliary set of remote reference variables Q are avail-
able, where for a given frequencyQ is N ×q with q ≥2. For standard
remote reference MT data, Q would typically consist of horizontal
magnetic field measurements collected some distance from the base
site, and hence q = 2. For more than one remote reference site or
where more than the auxiliary horizontal magnetic field is available
at a single reference site, the rank q of Q may be larger. In this
instance, the local magnetic field b may be regressed on Q in the
usual way by solving

b = Qt + ε (18)

where t is a q × 2 transfer tensor between the local horizontal
magnetic field b and the remote reference variables in Q and ε is
an N × 2 random error matrix. In practice, (18) may be solved as
a series of univariate regressions on the columns of b, t and ε. By
analogy to (12), the predicted local magnetic field is

b̂ = Q(QH
Q)−1Q

H
b (19)

which is just a projection operation. Substituting b̂ for b in (3) and
solving yields the generalized remote reference analogue to (4)

ẑq = (b̂
H
b̂)−1b̂

H
e (20)

When q = 2 so that Q is the standard N × 2 matrix of remote
reference magnetic field variables br, (20) can be simplified using
standard matrix identities to yield

ẑr = (
b

H
r b

)−1
b

H
r e (21)

which is identical to the remote reference solution of Gamble et al.
(1979), where the local auto- and cross-spectra are replaced by cross-
spectra with the reference magnetic field. In fact, it is easy to show

that b̂
H
b̂ = b̂

H
b, and hence (20) is not downward biased by uncor-

related noise because such noise is not present in b̂. Eq. (20) may be
thought of as the remote reference solution (21) with the two-channel
reference magnetic field br replaced by the projection (19). Just as
the remote reference method is equivalent to an econometric tech-
nique for solving errors-in-variables problems called the method of
instrumental variables (Wald 1940; Reiersol 1941; Reiersol 1945;
Geary 1949), the generalized remote reference method in (19)–(20)
is identical to a related econometric technique called two-stage least
squares (Mardia et al. 1979). Both methods arose to handle viola-
tions of the Gauss–Markov theorem where the predictor variables b
in (3) are correlated with the residuals r, in which case the solution
(4) is not unbiased and statistically consistent.

From (20), the hat matrix for the two-stage least-squares solution
is

Hq = b̂(b̂
H
b̂)−1b̂

H
(22)

which reduces to

Hr = br

(
b

H
r br

)−1
b

H
r (23)

when a single remote reference station is used. Eq. (23) differs from
the mixed local and reference field form HR proposed by Chave
& Thomson (1989, see their Eq. 27) and further studied by Ghosh
(1990). HR is not formally a projection matrix, and hence shares the
hat matrix properties outlined in Section 3 only approximately. The
more natural version (23) should be adopted in remote reference
applications.

Chave & Thomson (1989) combined a robust estimator like that
described in Section 3 and (21) to yield a robust remote reference
solution to the MT problem

ẑr
∗ = (

b
H
r vb

)−1 (
b

H
r ve

)
(24)

where the weights v are computed as for (6) based on the ordi-
nary residuals r from (3). This is a straightforward extension of
M-estimation that simultaneously eliminates downward bias in (6)
from uncorrelated noise on the magnetic field channels and problems
from outliers, and has been shown to perform well under general cir-
cumstances (e.g. Jones et al. 1989; Chave & Jones 1997). However,
it provides limited protection from overly influential values in either
the local or reference magnetic fields. Eq. (24) is easily generalized
to more than two remote reference channels at a single station or
to multiple reference sites by substituting b̂ for br to give ẑq

∗ . This
can be very useful when remote reference sites contain uncorrelated
noise with different frequency characteristics, as is demonstrated in
Section 10.

6 B O U N D E D I N F L U E N C E M T
R E S P O N S E F U N C T I O N E S T I M AT I O N

Two statistical concepts which are useful in understanding problems
with least squares and M-estimators are the breakdown point and
the influence function. Loosely speaking, the breakdown point is
the smallest fraction of gross errors which can carry an estimate
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beyond all statistical bounds that can be placed on it. Ordinary least
squares has a breakdown point of 1/N , as a single outlying data point
can inflict unlimited change on the result. The influence function
measures the effect of an additional observation on the estimate of a
statistic given a large sample, and hence is the functional derivative
of the statistic evaluated at an underlying distribution. Influence
functions may be unbounded or bounded as the estimator is or is not
sensitive to bad data. Further details may be found in Hampel et al.
(1986, Section 1.3).

The procedures described in Sections 3 and 5 are capable in a
semi-automatic fashion of eliminating bias due to uncorrelated noise
in the local magnetic field and general contamination from data
that produce outlying residuals. However, they do require that the
reference channels in Q and the local magnetic field b be reasonably
clear of extreme values or leverage points caused by instrument
malfunctions, impulsive events in the natural source fields, or other
natural or artificial phenomena. When this assumption is invalid,
then any conventional robust M-estimator can be severely biased.
As for least-squares estimators, M-estimators possess a breakdown
point of only 1/N , so that a single leverage point can completely
dominate the ensuing estimate, and their influence functions are
unbounded.

The discussion of Section 4 indicates that the hat matrix diagonal
elements serve as indicators of leverage, and hence extensions of ro-
bust estimation that can detect both outliers based on the regression
residuals and leverage points based on the hat matrix diagonal el-
ements can be devised (e.g. Mallows 1975; Handschin et al. 1975;
Krasker & Welsch 1982). When properly implemented, these al-
gorithms have bounded influence functions, and are often termed
bounded influence estimators as a result, although the term GM
(for generalized M) estimator is also in common use. The bounded
influence form of the normal equations analogous to (5) is

b
HΨw = 0 (25)

where w is a leverage weight. Two versions of (25) are in common
use (Wilcox 1997). If wi i = √

1 − hii and � =ψ (ri/d) as in Section
3, then the form is that originally suggested by Mallows (1975), in
which residual and leverage weighting are decoupled and leverage
points are gently downweighted according to the size of the hat
matrix diagonal elements. If � = ψ [r i/(w i i d)], then the approach
is that proposed by Handschin et al. (1975), and is more efficient than
the Mallows solution since large leverage points corresponding to
small residuals are not heavily penalized. However, Carroll & Welsh
(1988) have shown under general conditions that the approach of
Handschin et al. can lead to a solution which is not statistically
consistent, and only the Mallows approach will be used here.

In practice, the cited estimators have proved to be less than
satisfactory with MT measurements because downweighting of
high-leverage data is mild and limited rather than aggressive;
their breakdown point is only slightly larger than for conventional
M-estimators. More capable, high breakdown point (up to 0.5)
bounded influence estimators have been proposed (Rousseeuw
1984; Coakley & Hettmansperger 1993), but these typically entail
a substantial increase in computational overhead which limits their
applicability to the large data sets that occur in MT processing.

An alternative bounded influence estimator that combines high
asymptotic efficiency for Gaussian data, high breakdown point per-
formance with contaminated data, and computational simplicity that
is suitable for large data sets was proposed by Chave & Thomson
(1992, 2003) and is easily adapted to MT estimation. This is ac-
complished by replacing the weight matrix v in (6) or (24) with
the product of two diagonal matrices u = vw, where v is the M-

estimator weight matrix defined in Section 3 whose elements are
based on the regression residuals and w is a leverage weight matrix
whose elements depend on the size of the hat matrix diagonal. The
bounded influence MT response obtained from (6) with u in place
of v will be denoted by ẑ#.

Based on numerous trials with actual data, the robust weights
in (6) or (24) are frequently seen to both increase the amount of
leverage exerted by existing leverage points or create entirely new
ones, as will be demonstrated in Section 10. This occurs because
M-estimators do not have bounded influence and probably accounts
for many instances where robust procedures do not perform as well
as might be expected. Even with Mallows weights in (25), v and w
can interact to produce an unstable solution to the robust regression
problem unless care is used in applying the leverage weights. This is
especially true when the leverage weights are recomputed at each it-
eration step, which often results in oscillation between two incorrect
‘solutions’ each of which is dominated by a few extreme leverage
points. Instead, the leverage weights are initialized with unity on the
main diagonal, and at the kth iteration the ith diagonal element is
given by

w
[k]
i i = w

[k−1]
i i exp(e−χ2

) exp(−eχ (yi −χ )) (26)

where the statistic yi is Mh[k]
ii /p with

h[k]
i i =

√
u[k−1]

i bi

(
bHu[k−1]b

)−1
bH

i

√
u[k−1]

i (27)

and M is the trace ofu[k−1] which is initially the number of data points
N . χ is a free parameter which determines the point where leverage
point rejection begins. If the usual statistical rule of thumb where
rows of the regression (3) corresponding to hat matrix diagonal
entries larger than twice the expected value are to be regarded as
leverage points, then χ = 2. A better, albeit empirical, choice of χ

is the N th quantile of the beta distribution or the value of its inverse
corresponding to a chosen probability level. These choices will tend
to automatically increase the allowed size of leverage points as N
increases. To further ensure a stable solution, downweighting of
leverage points is applied in half-decade stages beginning with χ

set just below the largest normalized hat matrix diagonal element
and ending with the final value, rather than all at once.

To summarize this section, bounded influence response function
estimation for ẑ# without a remote reference begins with Fourier
transform estimates of short data sections as described in Section
2. At each frequency, an initial least-squares solution is obtained
from (4) and used to compute the residuals r as well as the scale d
from (8) and (9) using a Rayleigh residual model and the hat matrix
(11). A nested iterative procedure is then applied in which the outer
loop steps over χ ranging from immediately below the largest hat
matrix diagonal element to the selected minimum value χ0 and
the inner loop successively solves (6) using the composite weight
matrix u computed at each step, where v is given by the Huber
weights (7) using the residuals and scale from the previous inner
iteration and the elements of w are given by (26). The inner loop
terminates when the weighted residual power rHur does not change
below a threshold value, typically 1–2 per cent, or the solution ẑ#

does not change below a threshold value, typically a fraction of a
standard error. After all of the outer loop iterations, a second pass
is made with an identical outer loop and an inner one with the scale
fixed at the final Huber value and the more severe robust weight (10),
again terminating when the weighted residual power does not change
appreciably. Extension to the ordinary remote reference solution
(24) or its generalization is straightforward, and will be denoted by
ẑr

# and ẑq
# , respectively.

C© 2004 RAS, GJI, 157, 988–1006



Bounded influence magnetotelluric response function estimation 995

7 T W O - S TA G E B O U N D E D I N F L U E N C E
M T R E S P O N S E F U N C T I O N
E S T I M AT I O N

Correlated noise of cultural origin in the local electric and magnetic
fields is quite common, and hence extending processing methods
to attack such problems is of considerable interest. Robust remote
reference processing using (24) can be sensitive to correlated noise
on the local electric and magnetic field channels even if the reference
channels are noise-free. However, if a reference site which is not
contaminated by the noise source is available, this can be remedied
by a two-step procedure where the local and reference magnetic
fields are first regressed using the bounded influence form of (18)–
(19) to get a noise-free b̂, and then the bounded influence form of
(6) is solved after substituting b̂ for b. At each step, the absence of
correlated noise in the predictor variables makes the noise which
remains in the response variables appear like outliers so that it can
be eliminated by the bounded influence weighting procedure.

The first stage is the straightforward bounded influence solution
of (18) using the procedures described in Sections 2 and 5. The
bounded influence estimate of the projected magnetic field is

b̂ = √
u1Q(QH

u1Q)−1(QH√
u1b) (28)

where u1 is an N × N diagonal matrix which contains the first stage
bounded influence weights as defined in Section 6. The second stage
in the solution is the bounded influence regression of b̂ on e to give

#ẑq
# = (

b
H
ub

)−1(
b

H
ue

)
(29)

where u = u1 u2, u2 is the second-stage bounded influence weight
matrix computed as in Section 6 and u1 remains fixed at the final
values from the first-stage solution.

8 P R E - S C R E E N I N G O F DATA

The procedures described in Sections 3–7 work well unless a large
fraction of the data are quite noisy, as can occur when the natural sig-
nal level is comparable to or below the instrument noise level. This
frequently occurs in the so-called dead bands between 0.5 and 5 Hz
for MT and 1000 and 10 000 Hz for audiomagnetotellurics (AMT),
where natural source electromagnetic spectra display relative min-
ima. In this instance, robust or bounded influence estimators can
introduce bias into the response tensor beyond that which would en-
sue from the use of ordinary least squares. This occurs because most
of the data are noisy and the unusual values detected and removed
by data-adaptive weighting are actually those rare ones containing
useful information.

The solution to this difficulty is the addition of a pre-screening
step which selects only those data which have an adequate signal-to-
noise ratio applied prior to a robust or bounded influence estimator.
Three approaches have been suggested, and others will undoubtedly
evolve as future situations require. Egbert & Livelybrooks (1996)
applied a coherence screening criterion to single-station MT dead-
band data to select only those data segments with high electric to
magnetic field multiple coherence for subsequent robust processing.
Garcia & Jones (2002) pre-sorted AMT data based on the power in
the magnetic field channels, selecting only those values which ex-
ceed the known instrument noise level by a specified amount. Jones
& Spratt (2002) pre-selected data segments whose vertical field
power was below a threshold value to minimize auroral source field
bias in high-latitude MT data. All of these studies demonstrated sub-
stantially better performance for data-adaptive weighting schemes
after pre-sorting. Similar pre-processing stages can be applied to

data with single or multiple reference sites, although the number of
data sets and hence the number of candidate selection criteria are
increased.

9 S TAT I S T I C A L V E R I F I C AT I O N

Quantitative tests for the presence of outliers and leverage points do
not currently exist for realistic situations where anomalous data oc-
cur with multiplicity and intercorrelation. In addition, the difficulty
of devising such tests rises rapidly with the number of available
data and when the actual distribution of the outliers and leverage
points is unknown. This means that a priori examination of a data
set for bad values is not feasible, and hence it is necessary to con-
struct a posteriori tests to validate the result of a bounded influence
analysis. Further, due to the inherently non-linear form of bounded
influence regression solutions like (24) and (29), and because they
implicitly involve the elimination of a significant fraction of the
original data set, it is prudent to devise methods for assessing the
statistical veracity of the result. These can take many forms, as de-
scribed in Belsley et al. (1980) and Chatterjee & Hadi (1988). In an
MT context, the most useful have proved to be the multiple coher-
ence suitably modified to allow for remote reference variables and
adaptive weights, and quantile–quantile plotting of the regression
residuals and hat matrix diagonal elements against their respective
target distributions for Gaussian data.

In classical spectral analysis, the multiple coherence is defined
as the proportion of the power in the response variable at a given
frequency which is attributable to a linear regression with all of the
predictor variables (e.g. Koopmans 1995, p. 155). In MT, this is just
the coherence between the observed electric field e and its prediction
ê given by (11). Care must be taken to incorporate the bounded
influence weights for the first and second stages, as appropriate.
Let the weighted cross-power between vector variables x and y be
defined as

Sxy = xHuy. (30)

For two-stage processing, either x or y correspond tob and hence will
also implicitly contain the corresponding first-stage weights. Using
this notation, the generalized multiple squared coherence between
the observed electric field e and its predicted value ê is

γ 2
eê =

∣∣Seb(Sb̂b)−1Sb̂e

∣∣2

SeeSH
b̂e

(
SH

b̂b

)−1
Sbb(Sb̂b)−1Sb̂e

(31)

where b̂ is replaced by br for single-site remote reference process-
ing. In either instance, (31) is a complex quantity. Its amplitude is
analogous to the standard multiple squared coherence and its phase
is a measure of the similarity of the local and remote reference vari-
ables. In most instances, the phase should be very close to zero; a
significant non-zero phase is indicative of source fields with spatial
scales that are significant compared to the separation between the
local and reference magnetic field sites. When b̂ is replaced by the
local magnetic field b, (31) reduces to the standard multiple squared
coherence, and implicitly has zero phase.

A second and essential tool for analysing the results of a bounded
influence MT analysis, either with or without two-stage processing,
is comparison of the original and final quantile–quantile plots of the
residuals and the hat matrix diagonal. Quantile–quantile or q–q plots
compare the statistical distribution of an observed quantity with the
corresponding theoretical entity, and hence provide a qualitative
means for assessing the statistical outcome of robust processing.
The N quantiles of a distribution divide the area under a pdf into
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N + 1 equal-area pieces, and hence define equal probability inter-
vals. They are easily obtained by solving

F(q j ) = j − 1
2

N
(32)

for qj, where j = 1, . . . N , and F(x) is the appropriate cdf. A q–q plot
compares the quantiles with the order statistics obtained by ranking
and sorting the data along with a suitable scaling to make them data
unit independent. The advantage of q–q plots over some alternatives
is that it emphasizes the distribution tails; most of a q–q plot covers
only the last few per cent of the distribution range.

For residual q–q plots, it is most useful to compare the quantiles
of the Rayleigh distribution with the order statistics of the residuals
scaled so their second moment is 2, corresponding to that expected
of a Rayleigh variate. For hat matrix diagonal q–q plots, the quan-
tiles of the β (p, N − p) distribution may be compared with the
order statistics with both quantities scaled by p/N , so a value of 1
corresponds to the expected value.

The use of data-adaptive weighting which eliminates a fraction
of the data requires that the quantiles be obtained from the trun-
cated form of the original target distribution or else the result will
inevitably appear to be short-tailed. The truncated distribution is
easily obtained from the original one. Suppose data are censored
in the process of robust or bounded influence weighting using an
estimator such as those described in Sections 3, 5, 6 or 7. Let fX (X )
be the pdf of a random variable X prior to censoring; this may be
the Rayleigh distribution for the residuals or the beta distribution
for the hat matrix diagonal. After truncation, the pdf of the censored
random variable X ′ is

fx ′ (x ′) = fx (x ′)
Fx (b) − Fx (a)

(33)

where a ≤ x ′ ≤ b and FX (X ) is the cdf for fx(x). Let N be the original
and M be the final number of data, so that M = N − m 1 − m 2,
where m1 and m2 are the number of data censored from below and
above, respectively. Suitable choices for a and b are the m1th and (N
− m2)th quantiles of the original distribution fx(x). The M quantiles
of the truncated distribution can then be computed from that of the
original one using

Fx (q j ) = (Fx (b) − Fx (a))
j − 1

2
M

+ Fx (a) (34)

where j = 1, . . . .M .
Whether the data have been censored or not, a straight-line q–

q plot indicates that the residual or hat matrix diagonal elements
are drawn from the target distribution. Data which are inconsistent
with the target distribution are suggested by departures from linear-
ity which are usually manifest as sharp upward shifts in the order
statistic. With MT data this is often extreme, and is diagnostic of
long-tailed behaviour where a small fraction of the data occur at im-
probable distances from the distribution centre and hence will exert
undue influence on the regression solution. The residual q–q plots
from the output of a robust or bounded influence estimator should
be approximately linear or slightly short tailed to be consistent with
the optimality requirements of the Gauss–Markov theorem. How-
ever, the theorem does not prescribe a distribution for the predictor
variables, and hence there is not a requirement for the hat matrix
diagonal distribution to be β (p, N − p) unless the predictors are
actually Gaussian. Nevertheless, hat matrix diagonal q–q plots are
useful in detecting extreme values, as will be shown in the next
section.

Distributions and confidence limit estimates for the quantiles are
given by David (1981). The qualitative use of q–q plots can be
quantified by testing the significance of a straight line fit utilizing
these results. Alternately, non-parametric tests for the goodness-of-
fit to a target distribution of the Kolmogorov–Smirnov type can be
applied.

1 0 E X A M P L E S

The first example data set is taken from site 006 of a 150 km
long, east–west wideband MT Lithoprobe (BC87) transect in British
Columbia obtained in 1987 and described by Jones et al. (1988) and
Jones (1993). These data have been used extensively in studies of
distortion and its removal (see Chave & Jones (1997) for a sum-
mary). The data were sampled at a 12 Hz rate for about 17 hr and
include a remote reference located 1 km from the local site. Each
data series was processed into Fourier transform estimates at se-
lected frequencies using variable section lengths (see Section 3)
after pre-whitening with a five-term robust AR filter and tapering
with a Slepian sequence with τ = 1. Fig. 2 compares the xy (where x
is north and y is east) apparent resistivity and phase estimates ẑr

∗ and
ẑr

# obtained using the ordinary robust (hereafter OR) and bounded
influence (hereafter BI) remote reference estimators respectively, as
described in Sections 5 and 6. The BI result was computed with the
cut-off parameter χ in (26) taken as the 0.99999 (or upper 0.001
per cent) point of the beta distribution with (2, N − 2) degrees of
freedom. In general, the OR and BI results are similar except in the
band between 2 and 20 s, where the OR estimates are biased relative
to the BI ones and the OR jackknife confidence limits are sometimes
dramatically larger, reflecting the effect of leverage. There are also
more subtle but statistically significant differences between the two
types of estimates at periods shorter than 2 s, as shown below. The
differences seen in Fig. 2 cannot be removed by coherence thresh-
olding; pre-processing of the data to eliminate all data sections with
electric to magnetic field squared multiple coherence under 0.9 has
no effect beyond a slight increase in the confidence limits due to a
decrease in the effective degrees of freedom.

Fig. 3 shows an example of the severe bias that can ensue from
pre-whitening with a least-squares AR filter rather than the robust
AR filter described in Section 2. The data and BI methodology are
those used for Fig. 2, and the only difference between the two results
is in the pre-whitening. Note the erratic results at periods under 2
s (where the data power spectral density is weakest) obtained with
the least-squares pre-whitening filter.

Fig. 4 shows a complex plane view of various response estimates
for these data at a period of 5.3 s. This period is in the middle
of the band where substantial differences between the confidence
limits from the OR and BI estimators obtain. The ordinary least-
squares (hereafter OLS) estimate given by (4) is compared with the
OR and BI results; the latter are shown with the cut-off parameter
χ in (26) taken as the 0.999, 0.9999, and 0.99999 (upper 0.1 per
cent, 0.01 per cent and 0.001 per cent respectively) points of the
beta distribution for (2, N − 2) degrees of freedom, where N =
4342 is the number of estimates. There is no statistically significant
difference between the estimates with substantially different values
of the BI cut-off parameter, indicating that its selection is not critical.
In Fig. 4, both the OLS and OR estimates display large uncertainties,
reflecting heteroscedasticity that is not removed by data weighting
based entirely on the size of the regression residuals despite the
elimination of 7.2 per cent of the data. The BI estimator removes an
additional 6.8, 8.5 and 11.5 per cent of the data as the cut-off varies
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Figure 2. The apparent resistivity (bottom) and phase (top) as a function of
period for the Zxy component of the BC87 site 006 data described in the text.
The error bars are double sided 95 per cent jackknife confidence limits. The
solid circles denote the ordinary robust (OR) and the solid triangles denote
the bounded influence (BI) remote reference results as described in the text.
Spectra used for the computations have a TBW of 1 and were pre-whitened
using a five-term robust AR filter. The BI estimates have been offset to
slightly longer periods for clarity of presentation.

between 0.99999 and 0.999, indicating that only a small fraction
of the data is responsible for the heteroscedasticity. Further, the
standard error is reduced by more than a factor of 34 over the OR
result from bounding the influence.

Fig. 5 shows analogous complex plane responses from the region
where more subtle response function differences are observed at
a period of 0.89 s. There are large distinctions between both the
OLS and OR and the OR and all of the BI estimates, although the
relative standard error is less variable than for Fig. 4. In this instance,
the M-estimator solution displays a substantially smaller standard
error than both the OLS and BI values. It is also markedly biased
compared with the BI result; the M-estimator solution differs from
the BI one by more than six standard errors of the latter.

Figure 3. The apparent resistivity (bottom) and phase (top) as a function
of period for the BI estimate shown in Fig. 2 computed using a conventional
least-squares (solid circles) and robust (solid triangles) five-term autore-
gressive pre-whitening filter. The robust AR estimates have been offset to
slightly longer periods for clarity of presentation. The variability with the
least-squares approach is caused by AR filter instability which results in
extreme spectral leakage where the data power spectral density is low.

Figs 6 and 7 compare residual and hat matrix q–q plots for the
OLS and 0.99999 BI estimates at 5.3 s shown in Fig. 4. The OLS
q–q plots in Fig. 6 are both markedly long tailed, indicating the
presence of severe outliers and leverage points, and in fact the hat
matrix distribution appears to be more like a long-tailed version of
log beta than long-tailed beta. The most serious outliers are about
50 standard deviations from the Rayleigh mean, while the most
serious leverage points are over 1000 times the expected value of
the hat matrix diagonal. In contrast, the BI residual q–q plot in
Fig. 7 is only weakly long-tailed, and the upward concavity of the
result is indicative of a residual distribution which is slightly but
pervasively longer tailed than Rayleigh rather than the presence of
significant outliers. The OR residual q–q plot is indistinguishable
from that in Fig. 7, while the OR hat matrix q–q plot is very similar
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Figure 4. Complex plane view of the estimate in Fig. 2 at a period of 5.3 s.
Each symbol is plotted with the jackknife standard error. The bottom panel
is a magnified view with different x- and y-axis limits showing the three BI
estimates at the left in the upper panel. The symbols correspond to OLS (open
diamond), OR (solid circle) and BI estimates with a cut-off parameter χ in
(26) at the 0.99999 (solid square), 0.9999 (solid triangle), and 0.999 (open
triangle) points of the beta distribution with (2, N − 2) degrees of freedom,
where N is the number of estimates. N is 4342 for the OLS estimate.

to that in Fig. 6, indicating that robust weighting has little influence
on leverage points for this data set. It is the failure to eliminate
leverage effects which accounts for the large confidence limits on
the OR estimate in Figs 2 and 4. The BI hat matrix q–q plot is
approximately log beta with some smaller than expected values at
the lower end, but the huge leverage points at the upper end of the
distribution have been eliminated. It is easy to modify the bounded
influence estimator to eliminate unusual data at both the lower and
upper ends of the distribution, but the ensuing estimates are not
changed from those shown in Fig. 4.

Figure 5. Complex plane view of the estimate in Fig. 2 at a period of 0.89 s.
Each symbol is plotted with the jackknife standard error. The bottom panel
is a magnified view with different x- and y-axis scales showing the three BI
estimates at the bottom in the upper panel. The symbols correspond to OLS
(open diamond), OR (solid circle) and BI estimates with a cut-off parameter
χ in (26) at the 0.99999 (solid square), 0.9999 (solid triangle), and 0.999
(open triangle) points of the beta distribution with (2, N − 2) degrees of
freedom, where N is the number of estimates. N is 34 788 for the OLS
estimate.

Fig. 8 compares OLS and OR q–q plots for the hat matrix diagonal
corresponding to the 0.89 s estimates shown in Fig. 5. Comparison
of the two shows that robust weighting has actually increased the
size of the most extreme leverage points, possibly accounting for
the difference between the OR and BI results in Fig. 5. This phe-
nomenon is typical of OR procedures rather than unusual, and is
not surprising given the form of (24), which is independent of any
leverage measure. In fact, all of the short-period responses in Fig. 2,
where the OR and BI estimates show large statistical differences,
display this effect, indicating serious bias in the absence of leverage
control.
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Figure 6. Quantile–quantile plots for the regression residuals (top) and hat
matrix diagonal (bottom) for the OLS solution of Fig. 4. The absolute values
of the regression residuals are scaled to have a variance of 2 and plotted
against the Rayleigh quantiles in the top panel, while the hat matrix diagonal
elements are scaled by N /p, converted to logarithms, and plotted against β(p,
N − p) quantiles, also scaled by N /p, in the bottom panel. Note the extremely
long-tailed form of both quantities.

The second example is taken from the Southeast Appalachians
(SEA) transect extending from South Carolina to Tennessee col-
lected in 1994 (Wannamaker et al. 1996). The data sets used here
were part of the long-period MT effort described by Ogawa et al.
(1996), and consist of 5 s sampled, five-component MT data col-
lected contemporaneously at many sites. The local site will be taken
as SEA335 (36◦12′17′′ N, 81◦55′20′′ W) which is located within
the Blue Ridge Mountain belt, and the remote sites will be taken as
SEA320 (36◦38′52′′ N, 82◦19′05′′ W) and SEA360 (34◦53′08′′ N,
80◦16′30′′ W), located 61 and 209 km to the northwest and southeast
of the local site, respectively. The data have been rotated into an in-
terpretation coordinate system, so that the x direction strikes N50E
(or approximately along the strike direction for the Appalachian
Mountains) and the y direction strikes N140E. All of the data are
fairly clean and free of obvious problems, although the local site

Figure 7. Quantile–quantile plots for the regression residuals (top) and hat
matrix diagonal (bottom) for the 0.99999 BI solution in Fig. 4. See Fig. 6
caption for plotting details. The target distributions are the truncated forms
of the Rayleigh and beta distributions, as discussed in Section 9. The residual
distribution is slightly longer tailed than the Rayleigh, while the hat matrix
diagonal is approximately log beta with some extreme values at the lower
end.

does display strong current channelling such that the Zxy apparent
resistivity is about a hundredth of the Zyx apparent resistivity. In
what follows, all spectral estimates were computed using a time-
bandwidth three-Slepian sequence after pre-whitening with a five-
term robust AR filter, and the fourth and sixth frequencies in each
subsection were selected for processing to avoid contamination from
unresolved low-frequency components.

In fact, these data are sufficiently clean that nearly identical pro-
cessing results are obtained with most standard methods, yielding
a baseline result for comparison with various artificially contami-
nated versions of the data. As a demonstration, Fig. 9 compares the
yx component of the ẑr

# apparent resistivities and phases using sites
320 and 360 separately as remotes. The results for different choices
of remote references in Fig. 9 are indistinguishable. The ẑq

# estimate
computed with the two-stage formalism described in Sections 5 and
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Figure 8. Quantile–quantile plots for the hat matrix diagonal elements for
the OLS (top) and OR (bottom) estimates of Fig. 5. Note that robust weighting
in the bottom panel has increased the size of extreme leverage points.

7 using sites 320 and 360 simultaneously as remotes is essentially
identical, reflecting the high quality of the data and the low envi-
ronmental noise level. Residual and hat matrix q–q plots show the
presence of only weak outliers. In fact, the OR estimates ẑr

∗ and
ẑq

∗ are nearly identical to the BI estimates shown in Fig. 9, so that
leverage effects in these data are minimal. The generalized coher-
ence (31) is very high across the band while its phase remains near
zero, reflecting the lack of source-field complications at this mid-
latitude site. Because of these data features, little has been gained
by using multiple reference sites. Comparable results are obtained
for the xy component (not shown), although the longest period esti-
mates have large uncertainties due to the very weak electric field in
the x direction. The ẑr

# response using site 320 as a remote will be
used as a reference response in the sequel.

As a simulation of cultural effects, noise was added to both hori-
zontal components of the site 360 magnetic field data. This consists
of random samples drawn from a Cauchy distribution which have
been filtered forward and backward with a fifth-order Chebyshev
type-1 bandpass filter having cut-off points at about 200 and 1000
s. The MAD of the Cauchy noise was adjusted to be about one-third

Figure 9. The BI Zyx apparent resistivity and phase for SEA long-period
MT transect site 335 computed using site 320 (solid circles) and site 360
(solid squares) as remote references. The site 360 result has been offset in
period for clarity. The error bars are the double-sided 95 per cent confidence
limits estimated using the jackknife.

that of the data. The Cauchy distribution (Johnson et al. 1994, Chap-
ter 16) is equivalent to Student’s t distribution with one degree of
freedom and is substantially longer tailed than the Gaussian. As a
result, the additive noise appears to be quite impulsive, with peak val-
ues that exceed those of the original magnetic data by up to a factor of
10 000, and in fact the noise level is high enough to totally obscure
the original data in a time-series plot.

Fig. 10 compares the Zyx BI response using site 320 as a reference
as in Fig. 9 with the OR estimates ẑr

∗ and ẑq
∗ using site 360 (with noise)

and sites 320+360 (with noise) as remote references, respectively.
In the 200–1000 s band, both the apparent resistivities and phases
for the site 360 remote estimates are totally useless, being wildly
biased by the high noise level in the reference data. However, the
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Figure 10. The BI Zyx apparent resistivity and phase for SEA long-period
MT transect site 335 computed using site 320 (solid circles) compared with
the OR response using (panel A) site 360 (solid squares) and (panel B) sites
320 and 360 simultaneously (solid triangles) as remote references. The site
360 data include additive Cauchy-distributed noise as described in the text.
The site 360 (A) and site 320+360 (B) results have been offset in period
for clarity. The error bars are the double-sided 95 per cent confidence limits
estimated using the jackknife.

dual remote reference method easily eliminates this effect, and is
nearly identical to the result using clean remote reference data. This
is a graphic illustration of the value of multiple remote references;
good results will be obtained provided that at least one data set is
uncontaminated at a given frequency.

Fig. 11 shows the BI counterpart to Fig. 10(a), indicating that
control of leverage has substantially reduced both the estimate bias
and the size of the confidence limits even with only the noisy site
360 as a remote. As for the OR approach, the dual remote estimate
(not shown) is identical to that from uncontaminated data. While the
multiple remote solution is clearly the preferred solution, bounding

Figure 10. (Continued.)

the influence of the remote data set can substantially improve the
estimator performance and yield an interpretable response when
the reference is noisy. However, the examples in Figs 10 and 11
suggest that multiple rather than single remote references do offer
real advantages when one of the remote sites is noisy either over
part of the period range of interest or part of the time interval.
The two-stage regression approach which is implicit to the dual
remote estimator automatically eliminates noisy frequency or time
intervals, presuming that at least one clean remote is available.

Fig. 12 shows the magnitude of the txx component of the BI mag-
netic transfer tensor relating the x components of the local and re-
mote magnetic fields from the first stage in this process for both
noise-free and noisy site 360 data corresponding to Figs 9 and 11,
respectively. With the original data, the site 360 transfer function
is systematically smaller than its site 320 counterpart by up to a
factor of 2 due to some combination of weaker coherence with or
larger magnetic field variations at site 320. With the contaminated
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Figure 11. The BI Zyx apparent resistivity and phase for SEA long-period
MT transect site 335 computed using site 320 (solid circles) compared with
the BI response using site 360 (solid squares) as a remote reference. The site
360 data include additive, band-limited (200–1000 s) Cauchy-distributed
noise as described in the text. The site 360 results have been offset in period
for clarity. The error bars are the double-sided 95 per cent confidence limits
estimated using the jackknife.

site 360 data, the site 360 transfer function essentially vanishes in
the 200–1000 s band.

As a simulation of correlated cultural contamination, bandpassed
Cauchy-distributed noise filtered in the same way as for Figs 10–12
polarized 30◦ clockwise from the x-axis and with a MAD com-
parable to the original data was added to the local magnetic field
variables at site 335. The non-causal impulse responses from the
Zyx MT impedances for the uncontaminated data were computed by
minimizing a functional of the impulse response subject to fitting the
MT impedance; a maximum smoothness constraint in log frequency
was imposed as described by Egbert (1992). Simulated electric field
noise data were produced by convolving the impulse response with

Figure 12. The magnitude of the txx component of the magnetic transfer
tensor from the BI solution to (18) which relates the x component of the local
magnetic field at site 335 to the x components of the remote magnetic fields
at site 320 (solid line) and site 360 (dashed line). The upper panel utilizes
the original remote magnetic data, while the lower panel utilizes the site 360
data with additive, band-limited (200–1000 s) Cauchy-distributed noise as
described in the text.

the noise time-series. The size of the noise electric field was also
varied by amplitude scaling. The resulting noise data were added
to the site 335 data, varying the time duration of the noise from 0
to over 50 per cent of the total. Unlike for the earlier examples, the
additive noise is now correlated between the predictor and response
variables, and will result in rising bias in the response functions
as the noise duration increases unless it is eliminated during pro-
cessing. Fig. 13 compares BI processing on the original (clean) data
with BI and two-stage processing on contaminated data with a noise
fraction of 40 per cent and the noise electric field scaled so that its
MAD is about 80 times larger than the background. The BI result
is erratic over the affected period band since the estimator has dif-
ficulty distinguishing good from bad data. Leverage weighting is
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Figure 13. The Zyx apparent resistivity and phase for SEA long-period
MT transect site 335 with the electric and magnetic fields contaminated by
additive, band-limited (200–1000 s) Cauchy-distributed noise as described
in the text. In all cases, the response is computed using site 320 as a remote
reference. The solid circles denote the BI estimate using the original (clean)
data. This is compared with the (panel A) BI (solid squares) and (panel
B) two-stage BI (solid triangles) results, both of which have been offset in
period for clarity. The error bars are the double-sided 95 per cent confidence
limits estimated using the jackknife.

of limited use because the hat matrix is effectively that from the
remote reference data (see Section 5) at site 320 which are free of
the noise, and the correlated noise on the local electric and mag-
netic field variables makes it difficult to distinguish data from noise
as the noise fraction and amplitude rises. In contrast, the two-stage
estimate remains stable with only modest increases in the confi-
dence limits because the first-stage robust weights distinguish and
remove the noisy sections from the local magnetic field, and then
the second-stage robust weights eliminate any remaining noise in
the electric field because the local magnetic field has been cleaned.

Figure 13. (Continued.)

Fig. 14 compares residual q–q plots for the BI and two-stage
estimators at the 853 s period, graphically illustrating the effective-
ness of the latter. For both the BI and two-stage estimates, about
60 per cent of the data have been eliminated in the contaminated
band by weighting; the differences in Fig. 13 reflect how completely
the noise-contaminated sections have been removed. The two-stage
algorithm operates effectively both with high noise amplitude and
with a noise fraction approaching 50 per cent.

1 1 D I S C U S S I O N

Based on the recent MT literature, it would not be controversial to
suggest that all MT data processing should employ some type of
robust estimator with a remote reference. The examples presented
by Jones et al. (1989) provide graphic evidence of the value of a ro-
bust approach, and the state-of-the-art has certainly improved over
the past decade to further strengthen the arguments. The authors are
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Figure 14. Quantile–quantile plots for the residuals from the BI and two-
stage estimators shown in Figs 13(a) (top) and (b) (bottom) at a period of
853 s. The BI residuals are very long tailed, reflecting the inability of the
estimator to discriminate between signal and correlated noise, resulting in
the erratic response function seen in Fig. 13(a). The two-stage estimator very
effectively removes the correlated noise in the local magnetic field during
the first stage, enabling the second stage to remove it from the local electric
field. This results in a clean q–q plot and a good response function estimate.

not aware of any instances where robust methods fail when applied
intelligently rather than blindly. This means that individual atten-
tion must be paid to each data set, all of the time-series and their
power spectra need to be inspected, and the relevant physics of the
induction process must be incorporated into the analysis plan (e.g.
the nature of the source fields and any noise components must be
understood in at least a gross sense). These steps lead to decisions
about data editing, detrending and the pre-processing stage (Sec-

tion 8). A preliminary non-robust analysis is often useful because it
allows the raw data coherences and residual/hat matrix statistics to
be assessed (Section 9), and helps to further refine the requirement
for pre-processing. It can also indicate whether a standard robust
estimator will be sufficient.

Based on the results presented in this paper and the authors’ ex-
perience over the past decade, it is suggested that standard use of a
bounded influence remote reference estimator should supplant that
of its robust counterpart. If the enumerated analysis principles are
followed, the authors have not seen any examples where bounded
influence estimators fail to yield results that are, at a minimum,
comparable to robust estimates, and have seen numerous exam-
ples where bounded influence results are substantially better. This
is especially true as the auroral oval is approached, where substorm
effects can produce spectacular leverage (see Garcia et al. 1997,
and the BC87 examples in Section 10), and in the presence of many
types of cultural noise. Robust estimators which weight data sec-
tions on the basis of regression residuals frequently fail to detect
leverage points, and can easily be dominated by a small fraction of
high-leverage data or even a single data point. Bounded influence
estimators avoid this trap in a semi-automatic fashion. The bounded
influence estimator of Section 6 has a breakdown point of ∼0.5, and
can handle data sets with an even larger fraction of high leverage
values under some circumstances.

It is not difficult to rationalize the underlying log beta form for the
non-BI hat matrix diagonal distribution seen in Figs 6 and 8. Iono-
spheric and magnetospheric processes are extremely non-linear, and
more so at auroral than lower latitudes. As a result, their electromag-
netic effects are the result of many multiplicative steps. This means
that the statistical distribution of the magnetic variations will tend
towards log normal rather than normal (Lanzerotti et al. 1991), and
hence the resulting hat matrix diagonal will tend towards log beta
rather than beta.

There are situations where correlated noise is present on both the
local electric and magnetic fields where more elaborate processing
algorithms may be required. The two-stage algorithm of Section 7
works well in many instances, as shown with a synthetic example in
Section 10. Larsen et al. (1996) introduced a different two-stage pro-
cedure to deal with the correlated noise from DC electric trains that
explicitly separates the MT and noise responses. In both instances,
a remote magnetic reference which is free of the correlated noise
source is required. In the Larsen et al. algorithm, a tensor relating
the local and remote magnetic fields equivalent to t in (18) is first
computed to give a correlated-noise-free b̂, so that the correlated
noise in b is given by b − b̂. Both the magnetotelluric response z
and the correlated-noise tensor z′ are obtained from

e = b̂z + (b − b̂)z′ (35)

which explicitly separates e into magnetotelluric signal and corre-
lated noise parts, plus an uncorrelated residual. Eq. (35) is easily
solved using the methods of this paper by recasting the problem so
that b̂ and b − b̂ comprise a four-column b in (3), and z in (3) is
replaced by a four-parameter solution containing z and z′. However,
uncorrelated noise in b is implicitly combined with the correlated
noise b − b̂, and hence the estimates of z and z′ will always be
biased to some degree. This bias will rise as the relative size of
the correlated noise b − b̂ to signal b̂ increases, although this is
hard to quantify. The two-stage estimate is not biased because the
correlated-noise tensor z′ is never explicitly computed. A third alter-
native is the robust principal components method of Egbert (1997),
which can detect contamination from correlated noise and yield
good MT responses in some cases. It is currently unclear which
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approach will yield the best results with real data; evaluating this
will require direct comparisons using troublesome data sets.

Using data from a continuously operating MT array in central
California, Eisel & Egbert (2001) compared the performance of
parametric and jackknife estimators for the confidence limits on
the MT response function. Their preferred approach was based on
standard asymptotic parametric theory for a robust estimator (their
eq. 16). They further argued that both the fixed-weight jackknife,
as implemented by Chave & Thomson (1989) and used in this pa-
per, and a computationally more intensive subset deletion jackknife,
overestimated the errors, which led to their favouring the parametric
approach. However, it appears that the residual distribution of MT
data from locations near or within the auroral oval (at a minimum)
are systematically longer tailed than Gaussian even after bounded
influence estimators are applied; Fig. 7 is typical of such data sets.
In this instance, parametric approaches will consistently underesti-
mate the true confidence limits, which could lead to interpretation
errors. Whether the residual distribution is systematically long tailed
for other MT situations is unclear, although geomagnetically undis-
turbed data from mid-latitudes appear to more consistently yield
nearly Gaussian residuals. Because of this uncertainty, as well as
due to the other advantages of the jackknife enumerated by Thom-
son & Chave (1991), the authors continue to favour the use of the
jackknife for MT estimation. In essence, this favours confidence
limit conservatism at a possible and difficult to quantify slight sac-
rifice in reliability.
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