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Robust estimation of power spectra, coherences, and transfer functions is investigated in the 
context of geophysical data processing. The methods described are frequency-domain extensions of 
current techniques from the statistical literature and are applicable in cases where section-averaging 
methods would be used with data that are contaminated by local nonstationarity or isolated outliers. 
The paper begins with a review of robust estimation theory, emphasizing statistical principles and 
the maximum likelihood or M-estimators. These are combined with section-averaging spectral 
techniques to obtain robust estimates of power spectra, coherences, and transfer functions in an 
automatic, data-adaptive fashion. Because robust methods implicitly identify abnormal data, 
methods for monitoring the statistical behavior of the estimation process using quantile-quantile 
plots are also discussed. The results are illustrated using a variety of examples from electromag- 
netic geophysics. 

INTRODUCTION 

Reliable estimation of power spectra for single data 
sequences or of transfer functions and coherences between 
multiple time series is of central importance in many areas 
of geophysics and engineering. While the effects of the 
underlying Gaussian distributional assumptions on such 
estimates are generally understood, the ability of a small 
fraction of non-Gaussian noise or localized nonstationarity 
to affect them is not. These phenomena can destroy con- 
ventional estimates, often in a manner that is difficult to 
detect. 

Problems with conventional (i.e., nonrobust) time series 
procedures arise because they are essentially copies of 
classical statistical procedures parameterized by frequency. 
Once Fourier transforms are taken, estimating a spectrum 
is the same process as computing a variance, and estimat- 
ing a transfer function is a similar procedure to linear 
regression. Because these methods are based on the least 
squares or Gaussian maximum likelihood approaches to 
statistical inference, their advantages include simplicity 
and the optimality properties established by the Gauss- 
Markov theorem [e.g., Kendall and Stuart, 1977, chapter 
19]. For example, linear regression yields the best linear 
unbiased estimate when the errors are uncorrelated and 

share a common variance; this holds independent of any 
distributional assumptions about them. If, in addition, the 
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residuals are drawn from a multivariate normal probability 
distribution, then the least squares result is also a max- 
imum likelihood, fully efficient, minimum variance esti- 
mate. In practice, the regression model is rarely an accu- 
rate description due to departures of the data from the 
model requirements. Most data contain a small fraction of 
unusual observations or "outliers" that do not fit the 

model distribution or share the characteristics of the bulk 

of the sample. These can often be described by a proba- 
bility distribution which has a nearly Gaussian shape in 
the center and tails which are heavier than would be 

expected for a normal one, or by mixtures of Gaussian 
distributions with different variances. 

Two forms of data outliers are common: point defects 
and local nonstationarity. Point defects are isolated 
outliers that exist independent of the structure of the pro- 
cess under study. Typical examples include dropped bits 
in digital data, transient instrument failures, and spike 
noise due to natural phenomena (e.g., lightning). Local 
nonstationarity means a departure from a stationary base 
state that is of finite duration and must be differentiated 

from complete nonstationarity, in which the concept of a 
spectrum must be reformulated [e.g., Priestley, 1965; Mar- 
tin and Flandrin, 1985]. A geophysical example of local 
nonstationarity is seen in observations of the time-varying 
geomagnetic field: most of the time the data statistics are 
approximately constant, but this stationary process is inter- 
rupted sporadically by .brief but intense disturbances such 
as magnetic storms with markedly different characteristics. 
In some studies these events are regarded as contaminat- 
ing noise, and they must be removed to study the under- 
lying process. The influence of these types of outliers on 
regression problems can be complicated, as aberrant data 
in the dependent and independent variables produce quite 
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different changes in the output, and correlations between 
apparent data outliers in both variables can still yield rea- 
sonable regression parameters. In addition, new classes of 
outliers can occur in linear regression. In any case, it is a 
serious statistical error to blindly accept mixture situations 
of these types and analyze the combination as a unit. 
With such data, conventional least squares-based tech- 
niques will give inefficient and often seriously misleading 
estimates. This breakdown of the least squares model, 
while sometimes spectacular in form, is more typically 
insidious in that a seemingly reasonable answer is 
obtained, and considerable effort has gone into devising 
diagnostics to detect this sort of problem [e.g., Belsley et 
al., 1980; Cook and Weisberg, 1982]. 

Because the Fourier transform of even moderately 
long-tailed data tends to be Gaussian as the length of the 
series increases (essentially by the central limit theorem, 
but see Brillinger [1981, chapter 5] for details), it is some- 
times claimed that outliers in time series are not a serious 

problem. However, this is often not true, as shown by the 
power spectrum examples of Thomson [1977b], Kleiner et 
al., [1979], and Martin and Thomson [1982]. Further- 
more, coherences and transfer functions are substantially 
more sensitive to the presence of outli•ers, since multiple 
time series and ratios of spectra are involved. It is fre- 
quently argued that a careful analyst will examine a data 
set and use ad hoc remedies to avoid outlier difficulties. 

While this may work for obvious discordancies in small 
samples, it is impractical for large data sets or when, as 
often happens in time series, the outliers have a scale 
comparable to or smaller than that of the process under 
study. It is preferable to use statistical procedures that are 
robust, in the sense of being relatively insensitive to the 
presence of a moderate amount of bad data or to inade- 
quacies in the model, and that react gradually rather than 
abruptly to perturbations of either. Such methods have 
been developed over the past two decades and are 
reviewed by Huber [1981], Hoaglin et al. [1983], and Ham- 
pel et al. [1986]. 

In this paper the principles of robust statistics are 
adapted to univariate and multivariate spectral analysis 
within a geophysical context. The treatment begins with a 
review of some critical statistical concepts, especially 
robustness in the estimation of location and scale. This is 

followed by the introduction of the maximum likelihood 
or M-estimators for computing robust averages and solv- 
ing robust regression problems. After considering numeri- 
cal implementation of the M-estimators, some diagnostic 
plotting methods to help elucidate the extent of outlier 
contamination or nonstationarity in data are discussed. 
These tools are then combined with the section-averaging 
method of spectral analysis and applied to the estimation 
of power spectra, transfer functions, and coherences. The 
results are illustrated with a variety of examples from 
natural source electromagnetic geophysics. The paper 
closes with a discussion of distributional aspects and some 
suggestions for further work. 

STATISTICAL PARAMETERS AND ROBUSTNESS 

Given a continuous probability density function (pdf) 
f(x), the cumulative distribution function (calf) is 

denoted by F (x), where 

F(x) - • du f (u) (1) 
--oo 

To make the correspondence between theoretical and sam- 
ple entities clearer, write dF (x) for dx f (x) and indicate 
the empirical or sample cdf by dP (x). For a set of N data 
samples {x• }, this is given by 

1 2v 
(x ) = ( x - )dr (2) 

where 15 (x) is the Dirac delta function. Substitution of (2) 
into (1) yields the usual empirical cdf in which each data 
point corresponds to a step in probability of 1/N. 

A set of N real samples {x•} may be sorted into the 
ascending order 

x(•) •< x(2) •< .... •< X(2v) 

where x V) is called the j th order statistic. Note that the 
probability distribution of the ordered data is different 
from that of the original data; clearly x(i) depends on x(,__ l) 
and x(,+•) even when the {x•} are independent. Assuming 
these samples to be independent and characterized by the 
pdf f (x), the corresponding theoretical entities are the set 
of N quantiles Q;. These are found from the inverse cdf 
or quantile function F -1 (a), defined for 0 •< a •< 1 as the 
solution of 

adx f (x) = a (3) 
--oo 

with a = (j- l/5)/N for j = 1,2,..., N. The Q• divide the 
area under the distribution into N+ 1 probability intervals, 
with the first and last points assigned cumulative probabili- 
ties of 1/2N and 1-1/2N, respectively, and with a pro- 
bability step of 1/N occurring at each of the intermediate 
points. 

In the following, it will usually be assumed that the data 
{x•.} are independent, or at least uncorrelated. While this 
may appear strange in a time series setting, the ix,} should 
be thought of as Fourier transforms of a windowed section 
of data at some frequency, not as the original data in the 
time domain. Explicitly, consider N segments of data 
from a nominally stationary process y (t), with each seg- 
ment consisting of T discrete samples spaced A time units 
apart and offset by an amount b from the preceding one, 
and compute 

T--1 

Xk (co) = • vty(tA+ (k- 1)b ) e tø'tA k= 1,...,N 
t=0 

where vt is the data window. The quantity Xk (•o) is the 
windowed Fourier transform of the k th data segment at 
radian frequency •o. Even if closely spaced samples of the 
original process y (t) are highly correlated, the {Xk} will be 
uncorrelated at a given frequency for reasonable values of 
the base offset b. Similarly, information in a single data 
section at frequencies spaced at least the window 
bandwidth apart is uncorrelated. 

One of the most useful procedures in statistics is the 
summary characterization of a distribution or sample using 
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various types of averages. Of these, the most common 
one is location, specifying (in a loose sense) the center or 
peak value of a distribution or sample; examples include 
the mean and median. It is less commonly realized that 
such averages are the result of minimizing various norms. 
For example, the distribution mean /x and the sample 
mean, or average, • are obtained by minimizing the L2 or 
least squares norms of the residuals about the distribu- 
tions [f ix- IaF<x> ] 1/2 and [f Jx--• 12dP(x) I 1/2 with 
respect to/x and •, respectively. Performing the minimi- 
zation gives the familiar expressions 

iF(x) 
The sample median 5: is obtained by minimizing the L1 
norm of the residuals fix-5:l c iF(x). This is the same 
as minimizing the summed absolute deviations Z I Xl- • I 

t=l 

and reduces to the middle order statistic for N odd, 
5:=X(lN/21+l), where[] denotes the integer part. The sam- 
ple median is ambiguous for N even but is typically 
chosen as (X(tN/21)+X(lN/21+l))/2. This is the simplest 
example of an order statistic. The population median is 
•, = Ql/2 from (3). 

The L• and L2 norms have the advantages of being well 
known and, for the L2 norm in particular, of resulting in 
algebraically simple equations. However, there are few 
good reasons to consider them exclusively or to believe 
that they are the best choices except in restricted cir- 
cumstances. Much of the work in robustness has 

effectively been on finding more appropriate norms for 
actual data, rather than applying what J. W. Tukey 
describes as "over-utopian" assumptions. 

The second most common characterization of a distribu- 

tion or sample is a measure of its width, dispersion, 
spread, variability, or standard deviation, which is included 
under the generic term scale. There are numerous avail- 
able estimates of scale; Gross [1976] compares 25 variants 
of 12 distinct forms, and many others have been sug- 
gested. Among these are the minimum value of the 
norms achieved around the corresponding location esti- 
mates. This class includes the theoretical standard devia- 
tion 

f 12 dr(x) 
--c•o 

and the sample standard deviation 

s= Ix- l dp(x) = 
__• 

N 

n=l 

for the L2 norm, and the average absolute deviation 

& = f Ix-• IdF(x) 
__• 

(6) 

(7) 

(8) 

or its sample counterpart 

= Ix- Ix-l (9) 
for the L1 norm. 

A second class of scale estimate is obtained by reapply- 
ing the same estimator used for location to its absolute 
residuals. The median absolute deviation (MAD) is 
obtained by taking the median value of the absolute resid- 
uals about the L• location estimate 

SMA D = median { I Xl - 5: l} (10) 

The expected value of the MAD is the solution O'MAD of 

F (• + o' MAD ) -- F (• - o' MAD ) = 1/2 (11) 

The interquartile distance is a related scale estimate given 
by 

SIQ = X(3N/4)- X(N/4 ) (12) 

and is the spacing between the 75% and 25% points of the 
sample distribution, or the center range containing half of 
the probability. The corresponding theoretical value is 

O'IQ= Q3 A - Q1A (13) 

using (3), and is just twice the MAD for symmetric distri- 
butions. Both the average absolute deviation • and the 
standard deviation s are sensitive to outliers, and • is also 
inefficient. Further information on the MAD, interquar- 
tile distance, and other robust estimates of scale is avail- 
able from Mosteller and Tukey [1977]. 

The simplest extension of these ideas to the general 
linear regression model is obtained by minimizing a norm 
of the residuals in 

p 

Xl = E UljfiJ + rl i= 1,...,N (14) 
j=l 

where {Xl} is an N vector of data or observations, {Ul•} is 
an N x p matrix of known coefficients, {fi;} is a p vector 
of model parameters, and {r•} is an N vector of residuals. 
The solution of (14) depends on the norm that is chosen, 
and will not be the same even for the L• and L2 cases, as 
discussed by Claerbout and Muir [1973]. 

It is well-known that least squares estimates are notori- 
ously lacking in robustness, and both the sample mean 
and standard deviation may be strongly influenced by a 
single discordant data point. The resistance of the sample 
median and the scale estimates SlQ and SMAD to outliers is 
also well-established, and there are many applications 
where L• norm methods yield dramatic improvements 
over their L2 norm counterparts. This has led to sugges- 
tions to substitute the minimum absolute deviation for the 

least squares method for many geophysical problems 
[Claerbout and Muir, 1973]. There are at least three rea- 
sons why this course of action is imprudent. First, the 
Gauss-Markov theorem [e.g., Kendall and Stuart, 1977, 
chapter 19] establishes the optimality of the L2 estimator 
under general conditions on the structure of the regression 
residuals. No comparable result is known for the L1 esti- 
mator, and it is not difficult to show, for example, that 
with Gaussian data, var(•)=vr/2var(•). This reduction 
in efficiency for the L1 estimator means that about 60% 
more data is required to achieve equivalent parameter 
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uncertainties to the L2 estimator. Second, the natural pro- 
bability distribution for L• estimates is the Laplace or dou- 
ble exponential type, whereas L2 estimates involve the 
familiar normal distribution. This makes statistical infer- 

ences based on L• results more complex and less intui- 
tively appealing. Finally, for most data the residuals from 
a least squares procedure are in large part Gaussian, with 
the addition of a small fraction of outliers having different 
statistics. This suggests that some method for treating the 
contamination within the framework of a Gaussian model, 
rather than outright abandonment of that model, is the 
logical course of action [e.g., Tukey, 1975; Mallows, 1983]. 

One obvious way to achieve robustness is by the rejec- 
tion of outliers on the basis of some type of statistical test, 
followed by the use of least squares on the remaining and 
presumably good data. While a substantial amount of 
effort has gone into the development of outlier tests [Bar- 
nett and Lewis, 1978; Hawkins, 1980; Barnett, 1983; Beck- 
man and Cook, 1983], the bulk of the results apply only to 
single, isolated outliers, usually in a parent normal popula- 
tion. The dual phenomena of masking and swamping, in 
which one bad value may hide the presence of others, has 
been widely documented for the more common multiple 
outlier situation [Barnett, 1983]. Outlier detection 
becomes even more complicated in time series because of 
correlations between the data [Fox, 1972; Abraham and 
Box, 1979]. As a consequence, methods are sought that 
accommodate outliers and minimize their influence in a 
semi-automatic fashion. 

ROBUST ESTIMATION 

In addition to heuristic methods, two major classes of 
robust procedures are the L-estimators, based on combi- 
nations of the order statistics and the M-estimators, a vari- 
ant of maximum likelihood. L-estimates are especially 
useful for location problems with nonsymmetric distribu- 
tions. In a time series context, Thomson [1977a] applied a 
maximum likelihood L-estimator proposed by Mehrotra 
and Nanda [1974] for censored, exponentially distributed 
populations to get robust, section-averaged power spectra 
of contaminated data. While simpler than an M-estimator, 
this approach suffers from a loss of efficiency because the 
truncation point must be fixed in advance, so that the 
result is not data adaptive. L-estimators do not generalize 
readily to regression problems and are not considered 
further in this paper. 

To motivate the concept of an M-estimator, consider 
again the problem of determining the location parameter 0 
given independent samples {xi} drawn from a common pdf 
f (x-0) by maximum likelihood. The logarithm of the 
likelihood function L (0) is obtained in the usual way by 
inserting the data into the sampling pdf, yielding 

N 

logL (0)-- • logf (r,) (15) 

where r, =x•-0 is the i th residual. The strict maximum 
likelihood solution b for 0 comes from maximizing L (0), 
or its logarithm, and obviously depends on knowing the 
pdf f (x) exactly. A generalization of (15) based on a 
quantity p (x), which is called a loss function, can be writ- 
ten 

oo N 

M(O) = f p(x-O )dP(x) = •p(r,) (16) 
--•o i=1 

Clearly, if p---log f, minimizing M yields the ordinary 
maximum likelihood result (15). Furthermore, the esti- 
mate is identical to that obtained by the norm minimiza- 
tion methods discussed earlier. This equivalence is the 
basis for identifying L• and L2 as the natural norms for the 
Laplace and Gaussian distributions, respectively. Perform- 
ing the minimization of (16) gives the equation 

N 

52 q,(r, )= 0 
i=1 

where ½(x)=Oxp(X) is called an influence function. 
Equations (16) and (17) reduce to the least squares or 
least absolute deviations forms when p(x)=x2/2+c, 
½ (x) = x or p (x) = Ix I+c, ½ (x) - sgn (x), respectively, 
yielding the sample mean or the sample median as solu- 
tions. The formulation in (16) or (17) is equally valid for 
more complicated distributions, and the solution • is called 
an M-estimate. 

If enough data are available, the sampling pdf or its log- 
arithm can be estimated directly from it, resulting in a 
data adaptive, maximum likelihood estimate of location. 
In practice, it is rarely feasible to characterize the distribu- 
tion tails with the available data, and the loss function is 
usually chosen on theoretical grounds to retain high 
efficiency over a family of expected distributions in prefer- 
ence to yielding the maximum likelihood estimate for a 
single distribution. Since most data yield largely Gaussian 
residuals, with a small outlier fraction, it is customary to 
use loss functions giving high efficiency (say, > 95%) for 
normal data but which still provide reasonable protection 
for contaminated data. This slight loss in nominal 
efficiency is the inevitable penalty that must be paid to get 
a stable estimate in the general case. Since typical data 
contain 1-20% outliers, the increase in sample size 
needed to compensate for this rejection is small compared 
to the extra •60% needed for the L• estimator. Some 
commonly used loss functions are described by Holland 
and Welsch [1977] and Hampe! et al. [1986]. 

There is an additional complication that must be con- 
sidered with M-estimators: the solution • of (16) or (17) 
will not be scale invariant in the sense that multiplying the 
data {xi} by a constant will not necessarily result in a simi- 
lar change in b. To correct for this, it is necessary to 
replace (16) and (17) by 

and 

N 
ri 

min • p(-• ) (18) i=1 

N 
ri 

• •(-• ) = 0 (19) i=l 

where d is a robust estimate of scale. While joint optimi- 
zation with respect to both location and scale is described 
by Huber [1981, chapter 6] and Hampel et al. [1986, 
chapter 4], two practical but lower efficiency choices are 

dl= SMAD (20) 
O'MA D 
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and 

d2'- SIQ (21) 
O'lQ 

where SMAD and $IQ are the sample MAD and interquartile 
distance (10) and (12), and CrMAD and O'iQ are their 
theoretical counterparts for the appropriate standard pdf 
from (11) and (13). Because of the extreme sensitivity of 
the L2 estimate to outliers, use of the standard deviation 
(6) and (7)is not recommended. 

The concept of an M-estimator may be extended to the 
general linear regression model (14) by identifying the 
error r, as the regression residual [Andrews, 1974]. While 
(18) is not changed in form, (19) must be rewritten as 

N 

ß = ½ (-•) x•' = 0 j= 1, ...,p (22) 
where the superscript asterisk denotes the complex conju- 
gate. 

A variety of numerical procedures to solve the generally 
nonlinear forms of (18), (19), and (22) exist, but it is 
easiest to rewrite the problem as a weighted least squares 
one and iterate to linearize it. This allows the use of fast, 
accurate, and stable matrix algorithms. The weighted least 
squares forms of (18) and (22) are, respectively, 

N 

min •2 •'i2 2 r, (23) 
i--1 

where •v2--p (r/d)/r 2 and 
N 

•, wi ri x•* = 0 (24) 
i=1 

where w--½(r/d)/r. Note that this procedure gives two 
different weights: the •v• from treating the loss function 
formulation as an equivalent weighted least squares prob- 
lem, and w• from its equivalence with the influence func- 
tion. While distinct, they are not always clearly separated 
in the literature. In addition, w or ½ are often chosen a 
priori, implicitly defining •v and p. To linearize the 
weighted least squares problem, an initial solution is 
obtained using ordinary (unweighted) least squares, and 
both the residuals and a scale estimate like (20) or (2!) 
are computed. The weights are calculated from these, and 
the solution to (23) or (24) is found. This procedure is 
repeated using the residuals and scale estimate from the 
previous iteration at each stage until convergence is 
achieved. Note that the weights are data adaptive; the 
robust formulation ensures that data corresponding to 
residuals which are large compared to the scale will be 
downweighted. 

There are several forms of the weights in (23) that 
work well in spectral problems. The first of these was 
introduced by Huber [1964] on theoretical grounds and is 
based on a density function with a Gaussian center and 
Laplacian tails, yielding 

p(x) -- Ixl k 
2 

k 2 (25) 
- klxl Ixl > k 

2 

and a weight function 

III 

_ .• 2k k2 Ix l > k 
(26) 

where a value of k--1.5 gives better than 95% efficiency 
for outlier-free normal data. The corresponding Huber 
influence function ½ (x) = x for Ix I < k and k sgn (x) oth- 
erwise has weights which never descend to zero. Because 
it has a discontinuous derivative, the Huber function may 
introduce slight distortions in time series work if used 
exclusively. Since the weights (26) fall off slowly for large 
residuals, they provide inadequate protection against 
severe outliers. However, (25) is a convex function, so 
that convergence to a local, as opposed to a global, 
minimum cannot occur in the iterative weighted least 
squares solution. Use of the Huber weights gives a good 
starting point for the application of more severe types of 
weight functions. 

Another class of influence functions is called redescend- 

ing because the influence function and weights approach 
zero in the presence of large outliers. The biweight of 
Mosteller and Tukey [1977, chapter 10] is a typical redes- 
cending influence function. However, for time series 
work it has too much curvature near the origin and can 
introduce serious distortion [Thomson, 1977b]. To reduce 
this effect, Thomson [1977a] proposed a new weight func- 
tion 

w(x) = exp{-e•(Ixl--•)} (27) 

from a heuristic extension of the extreme value distribu- 

tion. The parameter fi determines the scale at which 
downweighting begins. While strictly empirical, the N th 
quantile of the appropriate probability distribution from 
(3) is an excellent choice for fl. This form has the advan- 
tages of being smooth, close to unity near the origin, and 
including an implicit dependency on the number of data in 
the weighting procedure; as the number of samples rises, 
extreme values become more common, and fi must 
increase to avoid affecting valid data. For example, 
fi -- Q•v corresponding to N= 103, 10 4, 105, and 10 6 for a 
normal distribution are 3.09, 3.72, 4.26, and 4.75 standard 
deviations, respectively. However, as with other rede- 
scending influence functions, the solution of (23) or (24) 
with (27) is not unique, so this weight should only be 
used after a good starting value has been found. 

NUMERICAL CONSIDERATIONS 

Equations (18) and (23) are generalizations of the usual 
linear regression statement (14), while (19), (22), and 
(24) are generalizations of the familiar normal equations. 
Since the numerical ill-conditioning of the normal equa- 
tions is well-known, it is best to solve the matrix form 
(23) by a numerically stable method such as QR or singu- 
lar value decomposition [e.g., Lawson and Hanson, 1974]. 
The QR decomposition method of solving (23) is used 
throughout this work. Since spectral analysis involves the 
Fourier transform, the matrices in (23) are complex. 
Complex least squares procedures are reviewed by K. S. 
Miller [1974] and are available in standard packages (e.g., 
CQRDC and CQRSL in LINPACK [Dongarra et al., 
1979]). Alternately, the problem may be broken down 
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into real and imaginary parts and solved using standard 
real algorithms. To avoid problems with numerical 
round-off, it is recommended that 64-bit arithmetic be 
utilized. 

Additional modes of failure in the solution of regression 
equations from collinearity of the coefficient matrix and 
similar effects are possible [Belsley et al., 1980], and a 
method for checking for these based on the condition 
number of u o is given by Lamerot# et al. [1986]. To illus- 
trate, consider a geomagnetic example where x, is a 
Fourier-transformed electric field from the i th data seg- 
ment. As independent variables in (14), take the 
corresponding transforms of the p- 3 magnetic field vari- 
ables uil=/-/•, ui2= Di, and ui3= Z, and solve for the {/•;}, 
or impedances. If H, D, and Z are linearly independent, 
a solution will exist, and collinearity is not a problem. 
However, in the presence of complex geologic structure or 
source field inhomogeneity, Z may depend on H and D 
through the tipper functions Ta and To defined by 

Z = Tall + ToD 

in which case the coefficient matrix would be theoretically 
of rank 2 (or collinear), and the numerical solution of 
(14) would be unstable. This problem is flagged by large 
values of the condition number, and a better solution is 
obtained by taking p-2 and, as is the usual practice, 
analyzing the vertical magnetic field separately. Note also 
that the presence of outliers in data can induce collinearity 
into an otherwise stable system of equations [Mason and 
Gunst, 1985]. For methods to help decide when (and 
how) to truncate near-collinear matrix systems, see Law- 
son and Hanson [1974, chapter 26] or Vogel [1986]. 

The matrix elements in the normal equations in a time 
series setting may be identified as the auto-spectra and 
cross-spectra of the data and coefficient variables. This 
may lead to the temptation to estimate these quantities 
independently and robustly, followed by solution of the 
normal equations for the transfer functions, rather than 
treating the entire problem as a unit using a common set 
of weights as described in the last section. While such a 
procedure will result in good estimates of the individual 
matrix elements, the resulting matrix structure may be 
seriously in error because the normal equations encoun- 
tered in spectral applications are often marginally condi- 
tioned even with ideal data, and small changes in the 
matrix elements induced by the individual robust pro- 
cedures can easily result in nonphysical solutions. Such an 
approach is discouraged even more than use of the ordi- 
nary normal equations. 

DIAGNOSTICS 

It is useful to develop diagnostic procedures that dis- 
close the extent of outlier contamination and give a visual 
indication of goodness of fit to a specified probability dis- 
tribution. These find application both in the early stages 
of the analysis, when decisions about the suitability of par- 
ticular statistical models must be made, and as the final 
step in robust estimation, when the efficacy of the method 
in reducing outlier influence must be assessed. While a 
myriad of techniques based on residual plotting have been 
proposed [e.g., Belsley et al., 1980; Cook and Weisberg, 

1982], a simple and effective method is based on the order 
statistics. The quantile-quantile (q-q) plot serves to simul- 
taneously yield indications of goodness of fit, sketch the 
extent of outlier contamination, and provide the key loca- 
tion and scale parameters. An important property of the 
N order statistics of a data sample {x•} is that they divide 
the area under a pdf into N+ 1 parts of not necessarily 
equal size. The q-q plot is obtained by comparing the 
quantiles of a specified distribution, Q;, which do divide 
the area under the pdf into equal-sized pieces, to the order 
statistics x V). If the latter are drawn from the assumed 
distribution, they will be similar to the quantiles, and the 
q-q plot will be an approximately straight line. Systematic 
departures from a straight line show that the model is 
inconsistent and can be used to guide the search for a 
better one. Outliers usually appear as deviations from a 
line at the extreme quarttiles. Finally, the slope and inter- 
cept of the line give the scale and location parameters for 
the experimental distribution. In the present work, q-q 
plots of the residuals from a robust procedure are exam- 
ined as a function of frequency. However, instrumenta- 
tion problems, such as stuck bits, often appear as plateaus 
or staircases in q-q plots of the raw data. For a lucid dis- 
cussion of q-q plots and their use, see Kleiner and Graedel 
[1980] or Lewis and Fisher [1982]. 

Other regression diagnostics, such as plots of the resid- 
ual against the input or output power, become unmanage- 
able if applied directly at all frequencies but can be tried at 
specific frequencies of interest. Another worthwhile check 
requiring only one additional plot is investigation of the 
condition number of the coefficient matrix as a function of 

frequency. The condition number is just the ratio of the 
largest to smallest singular values at each frequency and is 
available trivially if (23) is solved with the SVD method. 
Estimates of the condition number are also available from 

QR solutions. 
One important aspect of robust techniques is their abil- 

ity to identify unusual data. Typically, anomalous effects 
are either localized in frequency or in time and may occa- 
sionally be localized simultaneously in both. A common 
type of outlier is local nonstationarity and may be detected 
by the stationarity test given by Thomson [1977a, b]. This 
is Bartlett's M-test (no relation to M-estimates) for vari- 
ance homogeneity [Bartlett, 1937] computed as a function 
of frequency 

M (ro ) = N v log 
1 N 

j=l 

N 

v • log• (6o) (28) 
j=l 

where •. (w) is the spectral estimate for the j th data sec- 
tion at radian frequency •o and there are N individual esti- 
mates, each having v degrees of freedom, typically, 2 for 
raw spectra. If the series is stationary, M will be distri- 
buted approximately as X•2__•. Excessive variability 
between sets appears as large values of M, while nar- 
rowband processes produce values that are smaller than 
expected. Unusual sections may be identified by observ- 
ing the change in M when a given •k (w) is deleted. In this 
case, it may prove simpler to examine the variance or total 
power in the raw spectral estimates (i.e., the integral over 
frequency of the spectrum) against the subset index to 
find anomalous sections. 
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Another useful procedure to detect sections of a data 
series which are different is based on the innovations vari- 

ance. This is just the variance or power associated with 
the difference between an observation of a process and a 
linear prediction of it based on all of the earlier data. The 
one-step prediction variance is treated in detail by Priestley 
[1981, chapter 10]. In the present context, an estimate of 
the innovations variance is 

o-•,k = exp &o 1og•k (•o) (29) 
--to N . 

where •oN- is the Nyquist frequency. Higher than normal 
values for the innovations variance suggest a change in 
the structure of the underlying process because it cannot 
be predicted adequately from earlier data. In addition, the 
ratio of the innovations and ordinary variances is useful as 
a measure of the relative predictability of the process and 
is also scale invariant. 

SPECTRUM ESTIMATION 

A major problem in time series analysis is the choice of 
an algorithm that yields a spectral estimate, given a finite 
observation of the process of interest, such that the result 
is not badly biased, yet remains statistically consistent and 
efficient. That these requirements are usually in conflict is 
attested to by the plethora of techniques in the literature. 
For the purposes of this paper, only nonparametric esti- 
mates will be considered, eliminating those in which a 
specific functional form for the spectrum is assumed (e.g., 
maximum entropy). In addition, only direct estimates 
based on the discrete Fourier transform are of immediate 
interest. 

Computation of a direct estimate consists of the follow- 
ing steps: (1) tapering a data sequence or a subset of a 
data sequence (either the raw data or the residuals from a 
prewhitening operation) with a data window, (2) taking 
the discrete Fourier transform, (3) converting the result to 
a cross-spectrum or auto-spectrum by a suitable multiplica- 
tion, (4) smoothing the result to achieve statistical con- 
sistency, and (5) correcting for any prewhitening. The 
smoothing operation may be done by some combination of 
convolution with a second type of data window (band- 
averaging) and combining a set of independent raw esti- 
mates computed from a longer data sequence (section- 
averaging). It is usually assumed that the data window 
primarily controls bias, while the smoothing operation pri- 
marily controls variance, but interactions between the two 
procedures do exist. 

In applying robust M-estimation to spectral problems, 
only the section-averaging approach will be used. The 
data are assumed to consist of long sequences of contigu- 
ous values that may be subdivided into smaller pieces of 
equal length. A data window with good bias characteristics 
is then applied to the subsets with enough overlap 
between them to yield high efficiency, yet ensure approxi- 
mate independence of the raw spectra. For this purpose, 
the superiority of the prolate spheroidal sequences as data 
windows is well-documented [Thomson, 1977a; Slepian, 
1978]. A prolate data window with a time-bandwidth pro- 
duct of 4 and 70% overlap between estimates is used 

throughout this paper; this gives over 100 dB of bias pro- 
tection outside an inner domain of full width 8/(T/X ), 
where T is the number of samples in the data section and 
/x is their spacing, but shows partial correlation of the 
result inside that band. The correlation is the value of the 

equivalent lag window at the subset offset; see Thomson 
[1977a, section 3.3] for details. The raw spectral estimates 
obtained in this way serve as the input to an M-estimator, 
as described in the next two sections. 

Cases where only a few disjoint sections of data are 
available, or where the whole time series is short (in the 
sense that the frequencies of interest are comparable to 
the reciprocal series length), have traditionally been 
treated by band averaging with variable width smoothers 
and are not amenable to the robust procedures of this 
paper. In any case, band-averaged spectra have a low vari- 
ance efficiency if a low-bias data window is employed, and 
the multiple prolate window method of Thomson [1982] 
offers vastly superior performance without a significant 
loss of bias protection. Robustification of the latter is 
feasible under some circumstances and will be treated in a 

future paper. 
Nonparametric spectral estimates formally characterize 

only purely nondeterministic, stochastic processes. In 
many practical cases, additional deterministic signals, or 
components with a bandwidth comparable to the reciprocal 
series length, and so apparently deterministic, are present 
in a time series and can complicate the spectrum estima- 
tion problem considerably. Special methods are required 
to handle these even for contamination-free data [Thom- 
son, 1977a, b, 1982], and attention to the presence of line 
terms (periodic signals) is required when using robust 
techniques to avoid treating them incorrectly as outliers. 

ROBUST ESTIMATION OF POWER SPECTRA 

Robust computation of power spectra is a special case of 
the simple location parameter problem discussed earlier. 
At each frequency a set of independent raw power spectra 
are to be averaged together using an M-estimator; for 
slowly varying spectra, additional band averaging can be 
incorporated by combining several adjacent frequencies 
from each raw spectrum. It should be remembered that 
outlier contamination of some of the spectral subsets can 
only result in a power spectrum that is biased upwards 
since it is not possible to subtract from the power in the 
background process. This means that only individual esti- 
mates deviating in a positive sense from the current 
robust average are downweighted during the iterative pro- 
cessing. 

The robust algorithm employed for univariate power 
spectra is as follows: given a set of spectral sections to be 
averaged on a frequency-by-frequency basis, an initial 
robust solution is obtained from the sample median and 
used to find both the residuals and a scale estimate. 

Either the MAD or interquartile distance scaling (20) or 
(21) yields satisfactory results, although the latter offers a 
slight computational advantage. An iterative solution to 
the weighted location problem (23) is then sought using 
the weight function (27) modified to affect only data 
whose scaled residuals ri/d exceed the robust average by a 
critical amount (i.e., the absolute value operation in the 
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Fig. 1. Conventional (top curve) and robust (bottom curve) 
power spectra for the time variations of the north magnetic field 
at Victoria, British Columbia, Canada, during July 1982. The 
nonrobust spectrum is the arithmetic average of 42 independent 
pieces of data, with additional band-averaging yielding 84 esti- 
mates over 0.1--0.5 cph and 168 estimates over 0.5--30 cph. 
Because of severe nonstationarity it actually possesses only 10--20 
degrees of freedom. The bottom line is the robust average of the 
same raw spectra, such that the high-amplitude magnetic storms 
are eliminated, yielding a much higher equivalent degrees of free- 
dom (see text). 

exponent is removed). Convergence is achieved when the 
answer does not change substantially, typically after 3--5 
iterations. 

If outliers have been eliminated, power spectra are the 
sums of squares of almost normally distributed variates, 
and hence distributed as chi-square (X2). It is crucial to 
the correct operation of the nonlinear M-estimator that 
the proper distribution be used in getting the theoretical 
MAD and interquartile distance in (20) and (21). Using 
the discrete Fourier transform, each raw power estimate 
possesses 2 degrees of freedom at each frequency, neglect- 
ing the DC and Nyquist components, which have only 1 
degree of freedom. The X 2 distribution with 2 degrees of 
freedom (X•) is equivalent to the exponential distribution 
and has a pdf given by the standard form [Johnson and 
Kotz, 1970, chapter 18] 

f (x) = •,5 e --x/2 (x >• 0) (30) 

for which the median • is 21og2, the MAD itI, MAD is 
2sinh --•(•h)• 0.9624, and the interquartile distance is 
O-iQ--- 21og3 • 2.1972. The quantiles of the exponential 
distribution are given by 

log 
N 

N-jq-•A 
j= ],...,N (31) 

Using the Nth quantile of the X• distribution as the 
weight parameter/3 in (27), robust averaging becomes an 
adaptive procedure that operates automatically in all save 
exceptional cases. Detection of such exceptional cases is 
facilitated by examination of the q-q plot of the final, 
weighted data. If the weighting has been performed 
correctly, then the final q-q plot of the weighted spectral 
estimates (after discarding values with zero weight) against 
the X22 quantiles (31) should approximate a straight line. 
If it remains long-tailed, then the outlier fraction exceeds 
a typical value of 10-20%, and the weight parameter/3 
must be reduced. Since the scale parameters (20) and 
(21) are chosen to be consistent with a X22 distribution, the 

new weight parameter may be taken directly from the 
ordinate of the q-q plot as the point where the distribution 
tails begin to be evident. 

The robust power spectral method is best illustrated 
with some examples. Figure 1 compares robust and con- 
ventional spectra of the north magnetic field time varia- 
tions at Victoria Observatory for the month of July 1982. 
The data are typical of the mid- to high-latitude geomag- 
netic field, consisting of a quiet background component 
interspersed with violent, short-duration storm activity. 
The latter comprise only 10-20% of the data but exhibit 
power levels that are easily a decade above the back- 
ground. The spectra in Figure 1 were computed by 
averaging, both arithmetically and robustly, raw estimates 
of 2 days duration. The conventional, arithmetic-averaged 
spectrum is about a factor of 10 larger than the robust 
spectrum and displays much greater point-to-point varia- 
bility. Owing to the data adaptive weighting, the nominal 
number of estimates per frequency for the robust spec- 
trum is variable but lower by a factor of about 0.9 com- 
pared to the conventional type. An argument ignoring 
robustness would imply that the equivalent degrees of 
freedom per frequency (about 90 in this example) is 
higher for the straight arithmetic-averaged spectrum, but 
this is contradicted by the higher variability seen in Figure 
1. In fact, the conventional estimate is dominated by only 
a fraction of the data, so that it has only 10-20 degrees of 
freedom at most, accounting for the larger uncertainty. 
The robust spectrum is a much better measure of the 
time-averaged behavior of the geomagnetic field, while the 
conventional spectrum is little different from that given by 
analysis of only the storm time data. 

The q-q plots in Figure 2 illustrate the statistical nature 
of the robust averaging procedure. For convenience in 
plotting, the raw and weighted estimates in each frequency 
bin have been scaled so that their sum of squares is 8, the 
value expected for the second moment of a X22 variate. 
The top plot show the original (unweighted) q-q plot for a 
few frequencies in the range 0.3-0.4 cph which are typical 
of the entire spectrum. The infrequent but intense storm 
activity gives a typical long-tailed distribution. The shape 
of the weight function causes the bottom q-q plot of the 
final, weighted power estimates to be slightly short-tailed. 
Increasing the weight parameter/3 would bring this closer 
to a true X• result. However, the short-tailed nature of 
the result does not appreciably alter the robust spectrum 
of Figure 1, especially on the logarithmic scale over which 
significant power changes occur. 

The stationarity test (28) was computed using the 2- 
day-long raw section estimates of Figure 1. The value of 
M was about 130 from the lowest frequency to about 0.2 
cph, decreased slowly to a value of about 70 at the 
Nyquist frequency, and did not display any structure that 
was localized in frequency. The expected value of M is 
64.3, indicating strong nonstationarity at low frequencies. 
The reduction of M at high frequencies is caused by a rise 
in the noise level as the spectrum decreases; instrument 
noise is generally quite stationary. Further examination of 
the series shows that the detailed form of the nonsta- 

tionarity is complicated. The ordinary variance in each 
section of data normalized to its average over all of the 
sections is plotted against time in Figure 3 (top). The 
subset variance exceeds twice the average value at five 
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Fig. 2. Quantile-quantile plots for the conventional (top) and 
robust (bottom) spectra of Figure 1 in the frequency range 
0.3--0.4 cph. The plots show the N ranked raw power estimates 
in a given frequency bin and scaled so that their sums of squares 
is 8 against the N quantiles of the X22 distribution; each plotted 
symbol corresponds to a single data section, and different symbols 
correspond to different frequency bands. The nonrobust q-q plot 
at the top shows a largely X22 population, with an additional long- 
tailed component that is attributed to brief but intense magnetic 
storms. The q-q plot at the bottom shows the effect of adaptive 
weighting of the data, eliminating the storms and yielding a 
slightly short-tailed X22 result. 

separate and isolated places; these are associated with 
small magnetic storms. The innovations variance from 
(29) normalized by its average over all of the data sections 
is shown against time in Figure 3 (bottom). This was 
much higher than the mean for extended periods after the 
five events of Figure 3 (top), suggesting complex and 
long-term changes in the underlying process. The innova- 
tions variance is also higher between days 14 and 20 
without any obvious association with the power, implying 
a different type of change in the structure. The ratio of 
the innovations and ordinary variances stayed near its 
median value during the high power event at day 3, imply- 
ing that the structure of the process did not change much 
even though the ordinary variance increased dramatically. 
However, the process was altered after this event, as evi- 
denced by an increase in the ratio, and returned slowly to 
normal with time. The largest overall change in the struc- 
ture of the process occurs during a 4-day interval near the 
center of the record where the relative prediction variance 
decreases by a factor of 4 from its median value; this is 
also apparent in Figure 3 (bottom). 

Figure 4 shows both conventional and robust spectra of 
the electric field variations in the frequency band 10 --4 to 
1 Hz collected on Adams Mesa, Arizona, in 1979. The 
differences between the robust and nonrobust results are 

more substantial than for Figure 1, especially at the 
highest frequencies, where the conventional spectrum is 
dominated by outliers. Note in particular the oscillatory 
nature of the conventional estimate, remembering that it 
is plotted on a logarithmic frequency scale. This behavior 
is typical of a few large outliers in a single subset. Figure 
5 shows original and final q-q plots for two frequency 
intervals, 0.010-0.013 Hz and 0.200-0.204 Hz. The 
former band shows typical long-tailed behavior caused by 
a small fraction of outliers that is easily corrected by the 
robust method. The higher-frequency interval also shows 
the effects of a few extremely large outliers; these are 
again removed by the robust averaging procedure with a 
dramatic effect on the spectrum. 

ROBUST ESTIMATION OF TRANSFER FUNCTIONS 

AND COHERENCES 

The robust computation of transfer functions is the 
frequency-domain equivalent of multivariate robust linear 
regression, while the coherences are similar to the correla- 
tion coefficients of statistical inference theory, and are 
derived from the output and residual powers obtained dur- 
ing the M-estimation procedure. The spectral problem 
differs from more conventional ones because the data are 

complex rather than real numbers, and there are at least 
two frameworks within which determination of the robust 

scale and iterative reweighting may be performed. In the 
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Fig. 3. The top panel shows the total power or variance in each 
windowed data subset used in obtaining Figure 1 as a function of 
the center time of the subset. These values have been normalized 

by the average power for the entire data series. The bottom panel 
shows the innovations variance for the different subsets against 
the center time of the subset. The innovations variance has been 

normalized by its mean over all of the subsets. See text for 
details. 
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Fig. 4. Conventional (top curve) and robust (bottom curve) 
power spectra of the north electric field collected on Adams Mesa, 
Arizona. The nonrobust spectrum is the arithmetic average of 43 
independent raw estimates, with additional band-averaging 
increasing this to 86 estimates over 0.01--0.1 Hz and 172 estimates 
over 0.1--0.5 Hz. The robust spectrum has •70 degrees of free- 
dom over 0--0.01 Hz, •130 degrees of freedom over 
0.01--0.1 Hz, and •250 degrees of freedom over 0.1--0.5 Hz. 
The severe effect of outliers is apparent on comparing the two 
results, especially at the highest frequencies. 

first instance, the data (i.e., the raw Fourier transforms) 
may be regarded as having independent Gaussian real and 
imaginary parts, so that separate weights are applied to 
them. In the second case, only the magnitudes of the 
complex numbers are considered, and identical weights are 
applied to the real and imaginary parts of the data. Zeger 
[1985] has shown that the latter choice, which has a Ray- 
leigh distribution, is preferable because it is rotationally 
(phase) invariant. It is also more conservative in that an 
outlier in either the real or the imaginary part of the data 
will result in downweighting. Extensive practical experi- 

ence reinforces this: in severely contaminated data, treat- 
ing the complex magnitude, rather than the independent 
real and imaginary parts, yields more consistent transfer 
functions and better convergence. Only the Rayleigh 
method is used in this paper. 

The robust M-estimator used for transfer function com- 

putation is similar to the standard procedures described 
earlier. The data input to the M-estimator are a set of k 
raw section Fourier transforms for a single output data 
series {Xk} and similar sets for p input data series 
both are also parameterized by frequency. The solution is 
initialized by computing an unweighted least squares result 
using QR decomposition on (14), from which residuals 
and a scale estimate (20) or (21) are obtained. The Huber 
weights (26) computed using the scaled residuals are then 
applied to the rows of the matrix regression problem (23). 
The weighted regression problem is solved, and the entire 
process is repeated until the total residual power does not 
change below a threshold value. This procedure gives a 
final scale estimate and an initial set of residuals for use in 

the last part of the algorithm. This is also based on itera- 
tively reweighted least squares but uses the weight func- 
tion (27) and a fixed scale estimate derived from the final 
Huber iteration, again terminating when the residual 
power does not vary. A modification of this procedure 
which substitutes an L• simplex programming algorithm 
for the iterativi• Huber one has also been used success- 

fully. The residuals from an L• solution are found and 
their MAD is used to get a final scale estimate. Iteratively 
reweighted least squares using the weight function (27) is 
then used until the residual power does not change sub- 
stantially. 

The standard probability distribution for a variate which 
is the square root of the sum of the squares of two 
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Fig. 5. Quantile-quantile plots for the nonrobust (top panels) and robust (bottom panels) power spectra of Figure 4. 
The left-hand side shows the results in the 0.010--0.013 Hz band, while the right-hand side covers the range 
0.200--0.204 Hz. In both cases the original distribution is a long-tailed X:22 type and is changed to a slightly short- 
tailed one by the robust averaging. The effect of only a few severe outliers on the spectrum is seen at the higher 
frequencies and by examining Figure 4. 
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Fi•. 6. Conventional (dashed lines) and robust (solid hn½s) 
squared mulfip|½ coherence plots for the north magnetic fi½|d at 
two seafloor stations o• Vancouver Island, site A (bottom) and 
site B (top), with al| three magnetic fi½|d components at ¾JctorJa 
Observatory. The data have been contaminated by an instrument 
fault, accounfin• for the low conventional coherence between ! 
and $ cph. Robust r½•r½ssJon completely removes this ½•½ct. See 
text for details. 

independent Gaussian variables is Rayleigh, a transformed 
version of the X22 distribution. The pdf is given by [John- 
son and Kotz, 1970, p. 197] 

f (x)---- xe --x2/2 (x >• 0) (32) 

Using (32), the median and interquartile distance are 
•=•/21og2 and O-•Q=•/21og4--•/21og4/3. The MAD is 
a solution of the transcendental equation 

2 sinh • O'MA D) = e (•rMAD)2/2 
yielding a value of •0.44845. The quantiles are 

Q; = 2log N-½-•!/2 j -- 1,..., N (33) 

As for the other robust methods, the N th quantile from 
(33) serves as the weight parameter/• in (27). 

The robust squared multiple coherence of the output 
with the p input time series is computed on a frequency- 
by-frequency basis from 

,,2 Sxx-Srr (34) 
3'- $x• 

where Sx• and Srr are the weighted output and residual 
powers 

N 

E I 
Sx• = •=• (35) N 

• w, 2 
i--1 

N 

E w, 2l r, I • 
Sr r = i=l (36) N 

• w, 2 
I----1 

and (34) is understood to be zero if Srr > Sx•. The weight 
w, is computed using (27) and the scaled residuals from 
the last iteration in the weighted linear regression, and set- 
ting wi- 1 yields the conventional, nonrobust coherence. 
Note that (34) reduces to the amplitude of the ordinary 
magnitude-squared coherence function when there is only 
one input data sequence (p=l). The weighted power 
spectrum in (35) is not the same as the robust result that 
is found using the methods of the last section because the 
weights are derived on the basis of regression rather than 
location residuals. The processes producing large regres- 
sion outliers may be different from those that generate 
anomalous power spectra; in particular, the local nonsta- 
tionarity seen in Figure 1 may not lead to regression prob- 
lems if the data and coefficient variables change in similar 
ways. In addition, new classes of regression outliers can 
occur that do not affect power spectra, and the origin of 
these outliers can be difficult to determine. 

Figure 6 compares the robust and nonrobust squared 
multiple coherence (34) between the north magnetic field 
at two seafloor sites off Vancouver Island and all three 

magnetic field components from the standard observatory 
at Victoria. The seafloor data were contaminated to vary- 
ing degrees by a nearly sinusoidal component of about 1- 
hour period that was later attributed to magnetized tape 
cassettes in the instrument data recorders. Both the 

period and the amplitude of the offending signal decreased 
continuously over the 1-month-long record, making it a 
frequency-localized outlier, rather than simply a deter- 
ministic component. Site B (top) was more heavily 
affected than site A (bottom), and the noise component 
was readily visible as a large amplitude sinusoid in the 
former case but only produced a slight fuzziness in the 
site A record. In either case, the conventional coherence 
(dashed lines) is reduced substantially by the contamina- 
tion, while the robust algorithm has readily' eliminated its 
effects. The conventional coherence possesses about 100 
nominal degrees of freedom per frequency, while the 
robust coherence has 85-90 degrees of freedom outside 
the zone of contamination and somewhat fewer inside it. 

Note also the presence of harmonics of the • 1 cph funda- 
mental. Because of instrument drift, a reduced signal 
level, and the electromagnetic effects of internal waves the 
coherence falls off at low and high frequencies in both 
examples: the robust method does not artificially increase 
the coherence when the underlying process is itself 
incoherent. This example illustrates the ability of the 
robust algorithm to handle both gross (site B) and subtle 
(site A) outliers in an automatic fashion. 
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Fig. 7. Unweighted (top) and weighted (bottom) residual q-q plots for the results in Figure 5 computed using the 
Rayleigh residual method described in the text. The left-hand side shows the initial long-tailed and final, slightly 
short-tailed distributions for the site A data over 0.97--1.14 cph. The right-hand side shows equivalent values over 
1.2--1.4 cph for the more severely contaminated site B data. 

Figure 7 shows sample Rayleigh q-q plots for the site B 
data over 1.2--1.4 cph (right panels) and for the site A 
data over 0.97-1.14 cph (left panels). For convenience in 
plotting, the residuals in each frequency band have been 
scaled so that the sum of squares is 2, as expected for the 
second moment of a Rayleigh-distributed variate. In both 
cases the contamination causes the original, unweighted 
q-q plots to be extremely long-tailed; this is especially evi- 
dent for the site B data. The final, weighted q-q plot 
shows a slightly short-tailed Rayleigh distribution for the 
residuals. There is a suggestion that a smaller value of the 
weight parameter ,6 would improve the result at site Bg 
this is corroborated by the dips in the robust coherence 
between 1 and 3 cph in Figure 6 (top). Such tuning is 
normally not required, but this is an exceptional case 
because the interfering signal is both strong and persistent. 

Figure 8 shows robust and conventional coherences 
between the north electric field collected on the bed of 

Lake Washington near Seattle in 1981 (A. Schultz, private 
communication, 1985) and two horizontal magnetic com- 
ponents from a nearby land site computed using 223 raw 
estimates. The roll-off at low and high frequencies is 
caused by the filters applied during data collection, but 
outlier effects seriously degrade the conventional coher- 
ence estimate between 0.001 and 0.03 Hz. The robust 

method yields a coherence of better than 0.99 over the 
same frequency band. Figure 9 compares the nonrobust 
and robust transfer functions for the same north electric 

and east magnetic components; this is just an element of 
the magnetotelluric response function. Outlier noise in 
the electric field causes the conventional transfer function 

to be excessively variable and consistently biased down- 
ward. By contrast, the robust transfer function is much 
smoother over the frequency interval of Figure 8 where 
the coherence is high. 

Figure 10 compares the original and final q-q plots for 
two frequency bands obtained using the Rayleigh residual 
method to get Figures 8 and 9. At the lower frequency 
(0.0013-0.0017 Hz) the contamination consists of a few 
large outliers, and the conventional coherence is degraded 
only a little. The final q-q plot shows a typical short-tailed 
Rayleigh result. In the higher-frequency band of 
0.0063-0.0067 Hz the nonrobust coherence is substan- 

tially lower and the outlier contamination much worse, 
but the robust algorithm is still successful in removing 
them with a concomitant improvement in the coherence 
and transfer functions. 

FREQUENCY (Hz) 

Fig. 8. The conventional (dashed line) and robust (solid line) 
squared multiple coherence between the north electric field at the 
bed of Lake Washington and the two horizontal magnetic field 
components from a nearby land site. There are 223 raw estimates 
used in both cases, but the robust coherence has fewer than 446 
degrees of freedom because outliers are downweighted. The 
robust squared coherence exceeds 0.99 over most of the range 
0.0005--0.02 Hz. 
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Fig. 9. The real (top) and imaginary (bottom) parts of the con- 
ventional (dashed lines) and robust (solid lines) transfer functions 
between the north electric and east magnetic field data of Figure 
8. The nonrobust and robust curves have been offset by 0.4 for 
clarity. The robust result is smoother than its conventional coun- 
terpart, while the latter is also biased downward by outlier noise. 

DISTRIBUTIONS AND RELIABILITY OF ESTIMATES 

A detailed discussion of the distributions for estimates 
of power spectra, coherences, and transfer functions is 
beyond the scope of this paper, and the subject is covered 
in detail by Brillinger [1981]. Traditionally, tests of 
hypotheses or the placement of confidence intervals on 
spectral parameters have required distributional assump- 
tions, with the complexity of the exact distributions neces- 
sitating further simplification and the use of asymptotic 
forms to give a tractable result. However, the standard 
assumption of independence and identical statistics for 
either the data or the regression residuals implies freedom 
from outliers. This suggests that the robust spectral esti- 
mates will match the statistical model more correctly, so 
that more realistic hypothesis testing can be performed 
using them. For the robust estimators of this paper, rea- 
sonable approximations are obtained using Gaussian-based 
statistics if 

N 

Neff(to) = • wi2(to) 
i=1 

is used as the effective or nominal number of estimates, 
where wi (to) is the robust weight for the univariate case. 
In the multivariate case this number is averaged over the 
p inputs, and Neff is reduced by a factor of p-1. This 
result is usually not as reliable as the jackknifed value 
mentioned below. In either case, variance calculations 
must include the correlation caused by the overlap of the 
windowed subsections, about 25% for the prolate taper 
with a time-bandwidth product of 4. 

In keeping with the nonparametric philosophy adopted 

o 0 6 
6 

4 

0 1.5 3.0 0 1.5 3.0 
RAYLEIGH QUANTILE RAYLEIGH QUANTILE 

Fig. 10. Unweighted (top) and weighted (bottom) residual q-q plots for the results in Figures 8 and 9 using the Ray- 
leigh residual method described in the text. Two frequency bands are shown, 0.0013--0.0017 Hz (left panels) and 
0.0063--0.0067 Hz (right panels). The initial result is typically long-tailed, and the outlier fraction is larger at the 
higher frequency. The adaptive weighting makes the final residuals slightly short-tailed. 
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in this work, it is possible to compute error and bias esti- 
mates by use of the jackknife method [R. G. Miller, 1974; 
Elton, 1982]. The jackknife is based on N repeated ana- 
lyses of the data using N-1 subsets each time, in addition 
to the original estimate using all N subsets. Appropriate 
combinations of these N+ 1 estimates give values for both 
the bias and the variance that are valid under a wide range 
of parent distributions and estimation procedures, and are 
generally considered to be more reliable than error esti- 
mates based on Gaussian statistics. Such a procedure 
clearly involves more computing than that for a single 
estimate, but the amount is not excessive, as it is not 
necessary to recompute the Fourier transforms. 

DISCUSSION 

The methods for computing robust power spectra, 
coherences, and transfer functions presented in this paper 
operate in an automatic, data adaptive fashion that breaks 
down only under unusual circumstances. Detection of 
their failure may be obvious on inspection and is eased by 
q-q diagnostic plotting. In addition, there are a few tools 
that can prove useful either in preventing problems or in 
correcting them when they appear. As has been noted, 
outliers in power spectra are usually completely different 
from those in the transfer functions and coherences. The 

former are generally associated with nonstationarity or 
obvious contamination of the data (e.g., spike noise) and 
are not difficult to detect or eliminate. Problems with the 

robust regression methods used to find transfer functions 
and coherences are more complicated and may be due to 
failures of either the data or the model. The following 
ideas are aimed primarily at improving the robust transfer 
function and coherence computations. 

Under some physical conditions there may be a correla- 
tion of the rate of occurrence or the size of outliers with 

the power in either the input or output data sequences. 
One obvious example of this is an instrument problem 
where clipping, saturation, or distortion at high signal lev- 
els on one or more data channels will result in poor corre- 
lations with other, clean, time series. There is also some 
evidence for an increase in the frequency of outlier 
appearance during large magnetic storms at mid- to high- 
latitudes that can affect electromagnetic induction data. 
These problems may be detected by plotting the power in 
the unweighted regression residuals against the power in 
the individual data series and looking for correlations. 
While the standard robust algorithms usually work with 
such data, a substantial improvement may result if the 
rows of (23) are weighted by the inverse of the power in 
the pertinent section of the offending time series at all 
stages in the iterative procedure. Weighting that is pro- 
portional to the data power is appropriate if the outliers 
occur during intervals of low activity. 

In both the robust power spectrum and transfer func- 
tion algorithms the residuals and a scale estimate are com- 
puted independently using the solution from an earlier 
iteration. At first glance this seems to be unnecessary 
since, for example, a Gaussian model for the data implies 
a scaled X 2 distribution for the power spectrum, yielding 
coupled estimates of location (i.e., the residuals) and 
scale. However, if periodic or other deterministic back- 
ground signals are present the Fourier transform has a 

nonzero expected value and the distribution becomes non- 
central X 2 [Johnson and Kotz, 1970, chapter 28], and loca- 
tion and scale estimates must be made separately. Similar 
arguments apply to the transfer functions and coherences, 
although their distributions are substantially more compli- 
cated in the noncentral case. In other instances, deter- 
ministic components may be known to be present (e.g., 
tidal signals) and are removed by a preliminary least 
squares procedure. Such approaches must be used with 
caution: first, by using a robust fitting procedure; second, 
by being careful to remove the right frequencies. 

The effect of noise in the data channels in introducing 
bias and erratic behavior into computed magnetotelluric 
response functions is well-known, and many techniques to 
circumvent this problem have been proposed. Numerical 
approaches include the selection or weighting of different 
data sections using coherence [Kao and Rankin, 1977; 
Jones and Joaticke, 1984] or iterative refinement of the 
response function [Larsen, 1975, 1980]. The most widely 
used and generally effective method is employment of a 
remote reference to minimize the uncorrelated noise 

between several distinct time series [Gamble et al., 1978]. 
These techniques are aimed at the removal of outliers 
from the data (especially the electric field), since it is a 
few discordant data values rather than persistent back- 
ground noise components that produce most of the erratic 
response function behavior. The effectiveness of a robust 
estimation approach in substantially reducing bias and 
variability is seen in Figure 9 and has been verified on 
many other magnetotelluric time series. The use of robust 
spectral analysis to reduce bias and related problems in 
magnetotelluric processing appears to be quite promising. 

The methods presented in this paper are based on con- 
ventional M-estimators and provide good protection 
against outliers in the data {xi} of (14). They are less 
effective when outliers occur only in the coefficient vari- 
ables {u 0} and cannot cope with grossly aberrant values in 
them. This leads to the concept of a breakdown point E* 
which is the smallest percentage of contaminated data that 
will cause the estimator to yield incorrect estimates. The 
breakdown point is zero for ordinary least squares in the 
presence of outliers in either the data vector or coefficient 
matrix and is also zero for outliers in the coefficient 

matrix with L• or M-estimators. M-estimators are pre- 
ferred over L1 types on statistical and efficiency grounds, 
not because of improved outlier resistance. 

This observation has led to the introduction of different 

robustification schemes for linear regression. Generalized 
M or G-M estimates were proposed with the goal of 
bounding the influence of outlying coefficient variables 
and are discussed by Mallows [1975]. The breakdown 
point for G-M estimates is at most 1/(p+ 1), or about 30% 
for simple linear regression. Rousseeuw [1984] suggested 
an alternate method based on replacing the sum in (14) 
with the median operator, yielding a breakdown point 
which approaches 50%. Larger values for E* are meaning- 
less, since discrimination of good from bad data becomes a 
matter of semantics. Neither of these approaches to 
robust regression have been applied to time series, but 
both are promising candidates to further improve robust 
spectral analysis. 

While the examples of this paper have been drawn from 
electromagnetic geophysics, the applications of robust 
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spectral estimation are by no means limited to that field 
and will find uses in many branches of geophysics and 
oceanography. Since spectral analysis is fundamentally a 
statistical tool, emphasis has been placed on the impor- 
tance of getting consistency between data and model, as 
well as on verifying the underlying statistical assumptions. 
The techniques presented here are capable of achieving 
this by giving substantial, automatic, and data adaptive 
protection from at least two classes of outliers and should 
be used whenever the section-averaging spectral methods 
would be appropriate. Use of robust spectrum estimates 
can also substantially reduce data editing chores; within 
reason, the effects of isolated, bad data are virtually elim- 
inated without user intervention. In conclusion, three 
points should be reemphasized. First, both spectrum esti- 
mation and robust statistics are fields of active research, so 
that the methods presented here are unlikely to be the last 
word on the subject. Second, while these methods can 
help to identify subtle outliers, this does not mean that 
they should always be summarily rejected: in some 
instances, the outliers may be the important part of the 
data. Finally, while there are many arguments about 
which robust methods are best, there is general agreement 
among statisticians that almost any robust method is better 
than none at all. 
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