The magnetotelluric method is a technique for imaging the electrical conductivity and structure of the Earth, from the near-surface down to the 410 km transition zone and beyond. It is increasingly used in geological applications and the petroleum industry. This book forms the first comprehensive overview of magnetotellurics, from the salient physics and its mathematical representation, to practical implementation in the field, data processing, modeling, and geological interpretation.

Electromagnetic induction in 1D, 2D, and 3D media is explored, building from first principles, and with thorough coverage of the practical techniques of time-series processing, distortion, numerical modeling and inversion. The fundamental principles are illustrated with a series of case histories describing geological applications. Technical issues, instrumentation and field practices are described for both land and marine surveys.

This book provides a rigorous introduction to the magnetotelluric method for academic researchers and advanced students, and will be of interest to industrial practitioners and geoscientists wanting to incorporate rock conductivity into their interpretations.

Alan D. Chave is a Senior Scientist at Woods Hole Oceanographic Institution. He has also been a Chartered Statistician (UK) since 2003, and has taught a graduate-level course in statistics in the MIT/WHOI Joint Program for 20 years. For over 30 years, he has conducted research utilizing the magnetotelluric method, primarily in the oceans, and has pioneered research into producing modern magnetotelluric processing methods. Dr Chave has also designed instrumentation for optical and chemical measurements in the ocean, and has played a leadership role in developing long-term ocean observatories worldwide. He has been an editor of *Journal of Geophysical Research* and editor-in-chief of *Reviews of Geophysics*.

Alan G. Jones is Senior Professor and Head of Geophysics at the Dublin Institute for Advanced Studies, and has been using magnetotellurics since the early 1970s. He has undertaken magnetotellurics in Europe, southern Africa, Canada and China, for problems ranging from the near-surface (groundwater contamination) to mining, geothermal studies and tectonics of the deep mantle (to 1200 km). He has been instrumental in many developments of magnetotellurics, from processing and analysis to modeling/inversion and interpretation. He was awarded the Tuzo Wilson Medal of the Canadian Geophysical Union in 2006, appointed to *Academia Europaea* in 2009, and made a member of the Royal Irish Academy in 2010.
THE MAGNETOTELLURIC METHOD

Theory and practice

Edited by
ALAN D. CHAVE
Woods Hole Oceanographic Institution

ALAN G. JONES
Dublin Institute for Advanced Studies
During the course of writing this book, we received the sad news of the death of Peter Weidelt while on a visit to Turkey, where he was planning to complete Chapter 4. Peter’s influence on magnetotellurics was profound, as he was especially responsible for giving the method a rigorous mathematical and physical grounding that constitutes the basis for many of the developments of the past few decades. Peter was a humble and generous man whose scientific contributions and humanity are sorely missed. This book is dedicated with warmth to his memory and with respect to his legacy.

Picture taken by Bai Denghai at the Schmucker Symposium on 27 July 2009, just four days before Peter’s untimely death.
Contents

Preface xi
List of contributors xviii

1 Introduction to the magnetotelluric method 1
Alan D. Chave and Alan G. Jones
1.1 Introduction 1
1.2 A quick tour of magnetotellurics 4
1.3 Historical perspective 7
1.4 Commercial use of magnetotellurics 10
1.5 The future of magnetotellurics 12
1.6 More information on magnetotellurics 13
1.7 Epilogue 14
References 14

2 The theoretical basis for electromagnetic induction 19
Alan D. Chave and Peter Weidelt
2.1 The Maxwell equations 19
2.2 Motional electromagnetic induction 20
2.3 Electromagnetic induction by extrinsic sources 25
2.4 The one-dimensional approximation 26
2.4.1 Modal solutions for the pre-Maxwell equations 26
2.4.2 Green’s functions 29
2.4.3 The poloidal magnetic (PM) mode 32
2.4.4 The toroidal magnetic (TM) mode 36
2.5 The two-dimensional approximation 37
2.5.1 The Maxwell equations in a two-dimensional medium 37
2.5.2 Inductive/galvanic coupling and the role of electric charge 40
2.5.3 Transverse magnetic mode: the electric field in the air half-space 41
2.6 Three-dimensional electromagnetic induction 42
2.6.1 The Maxwell equations for three-dimensional media 42
2.6.2 The role of anisotropy 44
References 47
viii Contents

3 Earth’s electromagnetic environment 50
3A Conductivity of Earth materials 50
 Rob L. Evans
 3A.1 Introduction 50
 3A.2 Conductivity mechanisms: electronic and semiconduction 52
 3A.2.1 Electronic conduction 53
 3A.2.2 Semiconduction: mantle conductivity 54
 3A.3 Multiple phases and fluids 56
 3A.3.1 Aqueous fluids 56
 3A.3.2 Silicate melts 57
 3A.3.3 Carbonatite melts 60
 3A.3.4 Sulfidic melts 60
 3A.3.5 Mixing relationships and interconnectivity 61
 3A.4 Conductivity structure beneath the oceans 63
 3A.4.1 Oceanic crust and sediments 64
 3A.4.2 Compaction and diagenesis 65
 3A.4.3 Basaltic crust 65
 3A.4.4 Clays and surface conduction 66
 3A.4.5 Oceanic mantle 67
 3A.4.6 Serpentinitization 71
 3A.5 Continents 72
 3A.5.1 Continental crust 72
 3A.5.2 Continental lithospheric mantle 77
 3A.6 Anisotropy 79
 3A.7 Comments on permeability and conductivity 81
 3A.8 Summary 82
 References 83

3B Description of the magnetospheric/ionospheric sources 96
 Ari Viljanen
 3B.1 Overview of interaction of Earth with solar wind 96
 3B.1.1 Major regions 96
 3B.1.2 Key physical concepts 97
 3B.2 General description of Earth’s external field sources 99
 3B.2.1 Observation of external current systems 99
 3B.2.2 Magnetic storms; Dst and the ring current 100
 3B.2.3 Polar substorms; auroral electrojet; field-aligned currents 101
 3B.2.4 Sq and ionospheric tides; equatorial electrojet 105
 3B.2.5 Hydromagnetic waves; Pc disturbances 106
 3B.2.6 Change of mode at about 1 Hz and dead band; Schumann resonances; lightning 107
6 Distortion of magnetotelluric data: its identification and removal

Alan G. Jones

6.1 Introduction 219
6.2 Theoretical considerations 222
 6.2.1 General 222
 6.2.2 Groom–Bailey distortion decomposition 224
6.3 Brief historical review 229
 6.3.1 Berdichevsky’s galvanic distortion effects 229
 6.3.2 Larsen’s galvanic distortion of a one-dimensional regional Earth 229
 6.3.3 Schmucker’s extension for a two-dimensional regional Earth 230
 6.3.4 Bahr’s equal phases 231
 6.3.5 Distortion decomposition 231
 6.3.6 Phase tensor 232
 6.3.7 Other approaches 234
 6.3.8 Extension for a three-dimensional regional Earth 235
6.4 Determinable and indeterminable parts of the distortion tensor 237
6.5 Statistical considerations 238
6.6 Influence of distortion on the MT response 239
 6.6.1 A simple but instructive two-dimensional model – the Rhine Graben 239
 6.6.2 A simple but instructive three-dimensional distorting body – the embedded hemisphere 242
 6.6.3 Distorted North American Central Plains (NACP) impedance 249
 6.6.4 BC87 dataset – lit007 and lit008 250
6.7 Recognizing distortion in magnetotelluric responses 250
 6.7.1 Forms of the magnetotelluric response tensor 250
 6.7.2 Dimensionality tools 253
 6.7.3 Directionality tools 268
6.8 Removing distortion from magnetotelluric responses 278
 6.8.1 Realistic synthetic data, far-hi 278
 6.8.2 Actual data, lit007 and lit008 284
6.9 Application to a one-dimensional anisotropic regional Earth 291
6.10 Conclusions 294
Acknowledgements 295
References 295
7 The two- and three-dimensional forward problems

Chester Weiss

7.1 Introduction

7.2 Numerical methods in two dimensions

7.2.1 Boundary conditions in two dimensions

7.2.2 Summary of the two-dimensional magnetotelluric differential problem statement (D)

7.3 Finite differences, elements, volumes and all that

7.3.1 Finite differences (FD)

7.3.2 Finite elements (FE) and the variational formulation (V)

7.3.3 Finite volumes (FV) and the variational formulation (V)

7.3.4 Numerical examples in two dimensions

7.4 The leap to three dimensions

7.4.1 Finite-difference solutions in three dimensions

7.4.2 Finite-element solutions in three dimensions

7.4.3 Numerical examples in three dimensions

7.5 Closing remarks

Acknowledgements

References

8 The inverse problem

William L. Rodi and Randall L. Mackie

8.1 Introduction

8.1.1 Chapter plan

8.2 Formulation of the magnetotelluric inverse problem

8.2.1 Parameterization of conductivity models

8.2.2 Magnetotelluric data and forward modeling functions

8.2.3 Statement of the inverse problem

8.2.4 Linear versus nonlinear inverse problems

8.2.5 Well-posed and ill-posed inverse problems

8.3 Least-squares solutions

8.3.1 Existence and uniqueness of least-squares solutions

8.3.2 Stability and model uncertainty

8.3.3 The linearized problem

8.3.4 Uncertainty analysis

8.4 Damped least-squares and smooth models

8.4.1 Stabilizing functionals

8.4.2 The nonlinear problem

8.4.3 The linearized problem

8.4.4 Uncertainty analysis

8.4.5 Choosing the regularization parameter

8.4.6 Comparison to Bayesian inference
8.5 Minimization algorithms 381
 8.5.1 Newton’s method 381
 8.5.2 Gauss–Newton method 382
 8.5.3 Levenberg–Marquardt method 383
 8.5.4 Model updates by conjugate gradients 384
 8.5.5 Nonlinear conjugate gradients 387
 8.5.6 Subspace methods 390
8.6 Derivatives of the forward functions 390
 8.6.1 Theoretical sensitivity distribution 391
 8.6.2 Numerical techniques 393
8.7 Examples 396
 8.7.1 One-dimensional models 396
 8.7.2 Three-dimensional models 403
8.8 Beyond least squares 407
 8.8.1 Non-Gaussian data errors 409
 8.8.2 Non-quadratic stabilizers 409
 8.8.3 Minimization algorithms 411
 8.8.4 Examples 411
 8.8.5 Sharp boundary inversions 412
 8.8.6 Model bounds 413
References 414

9 Instrumentation and field procedures 421
 Ian J. Ferguson 421
 9.1 Overview of magnetotelluric recording 421
 9.1.1 Requirements of magnetotelluric instrumentation 421
 9.1.2 Categories of magnetotelluric recording systems 422
 9.2 Magnetotelluric instrumentation: electrometers 424
 9.2.1 Physical principles 425
 9.2.2 Magnetotelluric electrodes 428
 9.2.3 Other components of magnetotelluric electrometers 433
 9.2.4 Field deployment of electrometers 435
 9.3 Magnetotelluric instrumentation: magnetometers 437
 9.3.1 Induction coil sensors 437
 9.3.2 Fluxgate sensors 440
 9.3.3 Additional types of magnetometer sensors 441
 9.3.4 Other components of magnetometers 442
 9.3.5 Field deployment of magnetometers 442
 9.4 Magnetotelluric data recording 443
 9.4.1 Digitization and dynamic range 443
 9.4.2 Data acquisition control and storage 444
 9.4.3 Sampling rates, frequency windows and recording strategies 444
Contents

9.4.4 Power requirements and batteries 446
9.4.5 Telemetry and distributed acquisition systems 447
9.4.6 Magnetotelluric instrument calibration and instrument noise evaluation 448
9.4.7 Common magnetotelluric site layout errors 449
9.5 Magnetotelluric field procedure: site selection 449
9.5.1 Physical requirements of magnetotelluric sites 450
9.5.2 Electromagnetic noise 450
9.5.3 Geological noise 460
9.5.4 Artificial resistivity structures 463
9.6 Fieldwork 464
9.6.1 Survey planning and arrangement 464
9.6.2 Site selection and permitting 466
9.6.3 Required equipment and supplies 466
9.6.4 Instrument calibration 469
9.6.5 Site installation 469
9.6.6 Site servicing 472
9.6.7 Site retrieval 473

References 474

10 Case histories and geological applications 480
Ian J. Ferguson, Alan G. Jones and Alan D. Chave
10.1 Introduction 480
10.2 Magnetotelluric studies of the continental crust 480
10.2.1 Imaging of the India–Asia collision 481
10.2.2 Imaging of fluids in an oblique compressional orogen in the Southern Alps, New Zealand 485
10.2.3 Three-dimensional imaging of the Ossa Morena Zone of the Variscan fold–thrust belt 493
10.3 Magnetotelluric studies of the continental mantle 500
10.3.1 Slave Craton 501
10.3.2 Kaapvaal Craton 504
10.4 Applied magnetotelluric studies 513
10.4.1 Geothermal investigation 515
10.4.2 Uranium exploration 518
10.5 Marine magnetotelluric studies 523
10.5.1 Imaging of the East Pacific Rise 525
10.5.2 Marine petroleum exploration 529
10.6 Conclusions 536
References 536

Index 545

The color plate section can be found between pages 302 and 303.
Just as electromagnetics was the last aspect of classical physics to be fully understood and theoretically described in the mid-nineteenth century, so was electromagnetics the last of the classical methods of physics to be utilized in geophysics, particularly exploration geophysics, to understand the Earth. Of the two basic types of electromagnetic methods, namely controlled-source and natural-source, this book describes the theory and application of natural-source electromagnetics, named “magneto-tellurics” ironically by a renowned seismologist, Louis Cagniard, in 1953, from “magneto” inferring magnetic fields and “telluric” inferring electric fields in the ground (tellus, Latin for “earth”). Magnetotellurics (the hyphen was dropped during the mid-1970s) has, since its early inception and embryonic years in the 1950s and 1960s, grown in stature to the extent that it is now a formidable geophysical tool for obtaining high-resolution information about the lateral and vertical variations in electrical conductivity that can be related to resources and geological processes.

This book was originally conceived as being written entirely by two people, but given the extensive breadth of the subject, they modestly decided that others needed to be invited to contribute chapters in their areas of specialty. Thus, the book comprises 10 chapters, each penned by one or more leading experts, and is organized in logical order (at least to the editors). The hope, of course, is that the whole is greater than the sum of its parts, such that the individual styles do not detract from the continuous theme.

The motivation behind the book is that there is no comprehensive and rigorous volume on modern magnetotellurics that is current, circumscribing today’s thinking, approaches and methods. The extensive review papers from the biennial “EM Induction Workshops” are excellent, but are not cohesive. The recent volume *Practical Magnetotellurics* by Fiona Simpson and Karsten Bahr, also published by Cambridge University Press, serves as a useful introductory text describing practical aspects, but is not as comprehensive.

The book is aimed to educate and inform at many levels. It is intended for the whole spectrum of readers, from the established practitioner in magnetotellurics, to graduate and advanced undergraduates in geophysics, to other geophysicists and other geoscientists. It can be read continuously, or can be read in parts, as the need arises.

Chapter 1, by Alan Chave and Alan Jones, provides an introduction to the book and particularly describes the historical perspective up to around 1960. A special place is
reserved for the role of the Japanese, whose investigations in the 1910s to 1940s have not been appreciated at the same level as the two papers, by Andrey Tikhonov and Louis Cagniard, that are often cited as establishing the field. Certainly, the Cagniard–Tikhonov magnetotelluric method should be renamed the Cagniard–Rikitake–Tikhonov method (the order of the names is immaterial, as the work was undertaken independently by all of them).

Chapter 2, by Chave and the late Peter Weidelt, describes the theoretical basis for magnetotellurics, starting with the Maxwell equations and working through one-, two- and three-dimensional (1D, 2D and 3D) solutions. The 1D magnetotelluric response is presented as a limiting case of a vertical magnetic dipole source, bringing out the role of a quasi-uniform source. Much of this is standard, but, for the first time in a book, a thorough treatment is presented of the electromagnetic fields produced by water motion.

Chapter 3 that follows—given the breadth of the topic, the Earth’s electromagnetic environment—is split into two parts. The first part, by Rob Evans, deals with laboratory studies of the electrical conductivity of rocks and minerals. This is a field that saw significant investment through the 1970s and 1980s, but suffered from quiescence through the 1990s. Encouragingly, there are more groups now undertaking measurements on rocks and understanding the physics of electrical conduction through them. In the second part, Ari Viljanen then follows by covering the nature and influence of external source currents flowing above Earth. For the most part, magnetotelluricists can reasonably assume a plane-wave model, but in equatorial and auroral latitudes this is not the case, and consideration has to be given to the effects of non-uniform sources.

Chapter 4, by Weidelt and Chave, gives a thorough treatment of the magnetotelluric response and magnetic transfer functions. The mathematical properties of the response function and its rotational invariants are explored in 1D, 2D and 3D. Chave also wrote Chapter 5, which follows on from Chapter 4 and describes the estimation of the response function using modern robust methods.

Chapter 6, by Jones, describes the next step in the logical chain of processing and analysis, which is evaluation of the derived response functions for distortion effects and its inherent dimensionality and directionality. Older magnitude-based methods are shown to be unsuitable, and newer phase-based methods are advocated.

Chester (Chet) Weiss penned Chapter 7, and presents the forward problem in magnetotellurics—determining the fields that would be observed given a particular conductivity distribution. Particular focus is given to the similarities and distinctions between finite differences and finite elements. Chapter 8 is concerned with the magnetotelluric inverse problem, and William (Bill) Rodi and Randall (Randy) Mackie describe various minimization algorithms in 1D and 3D.

The last two chapters that complete the book are concerned with practical aspects and the purposes of magnetotellurics, namely instrumentation and field procedures (Chapter 9) and case histories and geological applications (Chapter 10), authored by Ian Ferguson, with Jones and Chave also participating in the last chapter. It is hoped that those outside magnetotellurics will be enthralled by Chapter 10, and will appreciate what magnetotellurics can bring to addressing geological problems.
This book would not exist without the dedication, warmth and wisdom of those who were leaders of the field when the editors and chapter authors were young, aspiring students. To recognize some of these people always runs the danger of, by omission, inadvertently not recognizing others, but from a very personal perspective Alan Chave wishes to thank Chip Cox, Jean Filloux and Nigel Edwards, and Alan Jones wishes to recognize Rosemary Hutton, Ian Gough, Ulrich Schmucker and Peter Weidelt, who aided them in their training and development during their formative graduate and postgraduate years. The reviewers of the chapters of this book are all gratefully thanked for their generous advice. They were: Nestor Cuevas, Gary Egbert, Mark Everett, Colin Farquharson, Uli Matzander, Nils Olsen, Anne Pommier, Pilar Queralt, Art Richmond, Jeff Roberts, Weerachai Siripunvaraporn, David Thomson, Martyn Unsworth and John Weaver.
Contributors

Alan D. Chave
Deep Submergence Laboratory, Department of Applied Ocean Physics and Engineering
Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

Rob L. Evans
Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

Ian J. Ferguson
Department of Geological Sciences, University of Manitoba, Wallace Building, 125 Dysart Road, Winnipeg, R3T 2N2, Canada

Alan G. Jones
Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2, Ireland

Randall L. Mackie
Formerly: Schlumberger EMI Technology Center, Berkeley, CA 94804, USA

William L. Rodi
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Ari Viljanen
Finnish Meteorological Institute, Arctic Research Unit, Erik Palmenin aukio, FI-00560 Helsinki, Finland

Peter Weidelt (deceased)
Formerly: Institut für Geophysik und Extraterrestrische Physik, Technische Universität Braunschweig, D-38106 Braunschweig, Germany

Chester Weiss
Department of Geosciences, Virginia Tech, 4044 Derring Hall (0420), Blacksburg, VA 24061, USA